Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Jia is active.

Publication


Featured researches published by L. Jia.


Progress in Retinal and Eye Research | 2005

Understanding mechanisms of pressure-induced optic nerve damage

John C. Morrison; Elaine C. Johnson; William O. Cepurna; L. Jia

Patients with glaucoma can suffer progressive vision loss, even in the face of what appears to be excellent intraocular pressure (IOP) control. Some of this may be secondary to non-pressure-related (pressure-independent) factors. However, it is likely that chronically elevated IOP produces progressive changes in the optic nerve head, the retina, or both that alter susceptibility of remaining optic nerve fibers to IOP. In order to understand the nature of these progressive changes, relevant, cost-effective animal models are necessary. Several rat models are now used to produce chronic, elevated IOP, and methods exist for measuring the resulting IOP and determining the extent of the damage this causes to the retina and optic nerve. A comparison of damage, pressure and duration shows that these models are not necessarily equivalent. These tools are beginning to uncover clear evidence that elevated IOP produces progressive changes in the optic nerve head and retina. In the optic nerve head, these include axonal and non-axonal effects, the latter pointing to involvement of extracellular matrix and astrocyte responses. In the retina, retinal ganglion cells appear to undergo changes in neurotrophin response as well as morphologic changes prior to actual cell death. These, and other, as yet uncovered, abnormalities in the optic nerve head and retina may influence relative susceptibility to IOP and explain progressive optic nerve damage and visual field loss, in spite of apparent, clinically adequate IOP control. Ultimately, this knowledge may lead to the development of new treatments designed to preserve vision in these difficult patients.


Investigative Ophthalmology & Visual Science | 2011

Cell Proliferation and Interleukin-6–Type Cytokine Signaling Are Implicated by Gene Expression Responses in Early Optic Nerve Head Injury in Rat Glaucoma

Elaine C. Johnson; Thomas A. Doser; William O. Cepurna; J. A. Dyck; L. Jia; Y. Guo; Wendi S. Lambert; John C. Morrison

PURPOSE In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury. METHODS Unilateral IOP elevation was produced in rats by episcleral vein injection of hypertonic saline. ONH mRNA was extracted, and retrobulbar optic nerve cross-sections were graded for axonal degeneration. Gene expression was determined by microarray and quantitative PCR (QPCR) analysis. Significantly altered gene expression was determined by multiclass analysis and ANOVA. DAVID gene ontology determined the functional categories of significantly affected genes. RESULTS The Early Injury group consisted of ONH from eyes with <15% axon degeneration. By array analysis, 877 genes were significantly regulated in this group. The most significant upregulated gene categories were cell cycle, cytoskeleton, and immune system process, whereas the downregulated categories included glucose and lipid metabolism. QPCR confirmed the upregulation of cell cycle-associated genes and leukemia inhibitory factor (Lif) and revealed alterations in expression of other IL-6-type cytokines and Jak-Stat signaling pathway components, including increased expression of IL-6 (1553%). In contrast, astrocytic glial fibrillary acidic protein (Gfap) message levels were unaltered, and other astrocytic markers were significantly downregulated. Microglial activation and vascular-associated gene responses were identified. CONCLUSIONS Cell proliferation and IL-6-type cytokine gene expression, rather than astrocyte hypertrophy, characterize early pressure-induced ONH injury.


Experimental Eye Research | 2009

Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma?

Y. Guo; Elaine C. Johnson; William O. Cepurna; L. Jia; J. A. Dyck; John C. Morrison

Reduced retrograde transport of neurotrophins (NT) and their receptors has been hypothesized to contribute directly to retinal ganglion cell (RGC) loss in glaucoma. However, strategies of supplementing NT and NT receptors have failed to avert ultimate RGC death in experimental glaucoma. This study examines the response of major components of the NT system and their interacting proteins in a rat glaucoma model. Unilateral chronic intraocular pressure (IOP) elevation was produced by episcleral vein injection of hypertonic saline (N = 99). Retinas were collected and grouped by extent of optic nerve injury. Quantitative reverse transcription PCR, western blot analysis and immunohistochemistry were used to determine mRNA and protein levels and protein localization. Out of three RGC-specific Brn3 proteins (Brn3a, b, and c), only Brn3a was significantly downregulated at the message level to 35 +/- 4% of fellow values with the severest nerve injury. With IOP elevation, no significant alterations were found in retinal mRNA levels for BDNF, NGF, NT-4/5 or NT-3. The abundance of mature retinal BDNF protein was not significantly affected by elevated IOP, while proBDNF protein decreased linearly with increasing injury grade (r(2) = 0.50). In retinas with the severest nerve injury, TrkB and TrkC receptor mRNA levels significantly declined to 67 +/- 9% and 44 +/- 5% of fellow values, respectively. However, the levels of TRKB protein and its phosphorylated form were unchanged. Message level for p75(NTR) was linearly upregulated up to 219 +/- 26% with increasing injury (r(2) = 0.46), but no alteration was detected at protein level. The mRNA expression of p75(NTR) apoptosis adaptor proteins NADE, NRIF, and Lingo1 were significantly downregulated in retinas with the greatest nerve injury. A positive correlation was found between injury extent and message levels for Jun (r(2) = 0.23) as well as Junb (r(2) = 0.27), and RGC labeling of activated JUN protein increased. Atf3 mRNA levels demonstrated a positive linear correlation to the extent of injury (r(2) = 0.53), resulting in a nearly five-fold increase (482 +/- 76%) in eyes with the greatest nerve damage. Among downstream pro-survival signaling components, Erk5 mRNA expression was linearly upregulated (r(2) = 0.32) up to 157 +/- 15% of fellow values in retinas with the severest nerve injury (p < 0.01). A slight positive correlation was found between NF-kappaB message levels and injury extent (r(2) = 0.12). Bcl-xl mRNA levels in the most severely injured retinas were significantly reduced to 83 +/- 7% by elevated IOP exposure. Message levels for Erk1/2, Akt1-3 or Bcl2 appeared unaffected. Elevated IOP did not alter mRNA levels of pro-apoptotic Bim, Bax, or p53. This study demonstrates that elevated IOP exposure does not result in a dramatic decrease in retinal levels of either BDNF or its receptor, TrkB. It shows that the responses of NT pathways to elevated IOP are complex, particularly with regard to the role of p75(NTR) and Atf3. A better understanding of the roles of these proteins in IOP-induced injury is likely to suggest informed strategies for neuroprotection in glaucoma.


Investigative Ophthalmology & Visual Science | 2009

Reliability and Sensitivity of the TonoLab Rebound Tonometer in Awake Brown Norway Rats

John C. Morrison; L. Jia; William O. Cepurna; Y. Guo; Elaine C. Johnson

PURPOSE To compare the sensitivity of the TonoLab rebound tonometer with the Tono-Pen in awake Brown Norway rats and to compare their ability to predict optic nerve damage induced by experimental IOP elevation. METHODS TonoLab and Tono-Pen tonometers were calibrated in cannulated rat eyes connected to a pressure transducer. The TonoLab was used in awake animals housed in standard lighting to measure IOP during light and dark phases. Both instruments were used to monitor chronically elevated IOP produced by episcleral vein injection of hypertonic saline. Measured IOPs were correlated with quantified optic nerve damage in injected eyes. RESULTS Although they were lower than transducer and Tono-Pen measurements at all levels, TonoLab readings showed an excellent linear fit with transducer readings from 20 to 80 mm Hg (R(2) = 0.99) in cannulated eyes. In awake animals housed in standard lighting, the TonoLab documented significantly higher pressures during the dark phase (27.9 +/- 1.7 mm Hg) than during the light phase (16.7 +/- 2.3 mm Hg). With elevated IOP, correlation between TonoLab and Tono-Pen readings (R(2) = 0.86, P < 0.0001) was similar to that in cannulated eyes. Although both instruments provided measurements that correlated well with optic nerve injury grade, only the Tono-Pen documented significant IOP elevation in eyes with the least amount of injury (P < 0.05). CONCLUSIONS The TonoLab is sensitive enough to be used in awake Brown Norway rats, though instrument fluctuation may limit its ability to identify significant pressure elevations in eyes with minimal optic nerve damage.


Investigative Ophthalmology & Visual Science | 2008

Comparison of Anterior Segment Structures in Two Rat Glaucoma Models: An Ultrasound Biomicroscopic Study

Nikolaos Nissirios; R.A. Chanis; Elaine C. Johnson; John C. Morrison; William O. Cepurna; L. Jia; Thomas W. Mittag; John Danias

PURPOSE Optic nerve disease in chronic IOP elevation rat glaucoma models develops at different rates. This study was undertaken to investigate whether anterior chamber (AC) changes develop in two popular models in vivo and whether the changes are related to IOP. METHODS Ten female Wistar rats and 12 male Brown-Norway rats were subjected to episcleral vein cauterization (EVC) and hypertonic saline episcleral vein sclerosis (HSEVS), respectively. Contralateral untreated eyes served as controls. IOP was recorded for a period of 5 to 6 weeks, and with the rats under anesthesia, the eyes were imaged with an ultrasound biomicroscope. Measurements of the AC depth (ACD), trabecular-iris angle (TIA), iris thickness at the thickest point near the pupillary margin (IT), angle opening distance (AOD; at 200 microm from the scleral spur), and ciliary body area (CBA) were compared between control eyes of the two strains and between experimental and control eyes within each strain. The differences were correlated with IOP history. RESULTS Eyes subjected to EVC demonstrated greater increases in IOP than eyes subjected to HSEVS. Between rat strains, control eyes differed significantly in all the parameters studied, except for ACD. No difference was detected between experimental and control eyes in the EVC group. In contrast, experimental eyes in the HSEVS group had approximately 71% larger ACDs and approximately 32% smaller CBAs than did the contralateral control eyes (P < 0.001). ACD and CBA correlated well (R2 = 0.80 and 0.51, respectively) with IOP in the HSEVS group. Two of the experimental eyes in this group showed the presence of ultrasound-scattering material in the AC. CONCLUSIONS Despite apparently higher IOP exposure, eyes in the EVC rat model of glaucoma do not undergo changes in the AC. In contrast, eyes subjected to HSEVS display deepening of the AC and reduction in size of the ciliary body within 5 to 6 weeks. These changes correlate to IOP exposure and may be the result of specific changes induced by the experimental intervention. These models are likely to rely on different mechanisms of pressure elevation and cannot be used interchangeably.


Investigative Ophthalmology & Visual Science | 2007

Global Changes in Optic Nerve Head Gene Expression after Exposure to Elevated Intraocular Pressure in a Rat Glaucoma Model

Elaine C. Johnson; L. Jia; William O. Cepurna; Thomas A. Doser; John C. Morrison


Investigative Ophthalmology & Visual Science | 2004

Selective Ganglion Cell Functional Loss in Rats with Experimental Glaucoma

Brad Fortune; Bang V. Bui; John C. Morrison; Elaine C. Johnson; J. Dong; William O. Cepurna; L. Jia; Stacey Barber; George A. Cioffi


Investigative Ophthalmology & Visual Science | 2000

Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction.

L. Jia; William O. Cepurna; Elaine C. Johnson; John C. Morrison


Investigative Ophthalmology & Visual Science | 2000

Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats

L. Jia; William O. Cepurna; Elaine C. Johnson; John C. Morrison


Investigative Ophthalmology & Visual Science | 2005

Evaluation of Inducible Nitric Oxide Synthase in Glaucomatous Optic Neuropathy and Pressure-Induced Optic Nerve Damage

Iok Hou Pang; Elaine C. Johnson; L. Jia; William O. Cepurna; Allan R. Shepard; Mark R. Hellberg; Abbot F. Clark; John C. Morrison

Collaboration


Dive into the L. Jia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abbot F. Clark

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George A. Cioffi

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge