Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Jullion is active.

Publication


Featured researches published by L. Jullion.


Transactions of The American Philosophical Society | 2013

Freshwater fluxes in the Weddell Gyre: results from δ18O

P. Brown; Michael P. Meredith; L. Jullion; Alberto C. Naveira Garabato; Sinhue Torres-Valdes; Paul R. Holland; Melanie J. Leng; Hugh J. Venables

Full-depth measurements of δ18O from 2008 to 2010 enclosing the Weddell Gyre in the Southern Ocean are used to investigate the regional freshwater budget. Using complementary salinity, nutrients and oxygen data, a four-component mass balance was applied to quantify the relative contributions of meteoric water (precipitation/glacial input), sea-ice melt and saline (oceanic) sources. Combination of freshwater fractions with velocity fields derived from a box inverse analysis enabled the estimation of gyre-scale budgets of both freshwater types, with deep water exports found to dominate the budget. Surface net sea-ice melt and meteoric contributions reach 1.8% and 3.2%, respectively, influenced by the summer sampling period, and −1.7% and +1.7% at depth, indicative of a dominance of sea-ice production over melt and a sizable contribution of shelf waters to deep water mass formation. A net meteoric water export of approximately 37 mSv is determined, commensurate with local estimates of ice sheet outflow and precipitation, and the Weddell 2 Gyre is estimated to be a region of net sea-ice production. These results constitute the first synoptic benchmarking of sea-ice and meteoric exports from the Weddell Gyre, against which future change associated with an accelerating hydrological cycle, ocean climate change and evolving Antarctic glacial mass balance can be determined.


Reviews of Geophysics | 2011

Sustained monitoring of the southern ocean at Drake Passage: Past achievements and future priorities

Michael P. Meredith; Philip L. Woodworth; Teresa K. Chereskin; David P. Marshall; L. C. Allison; Grant R. Bigg; Kathy Donohue; Karen J. Heywood; Chris W. Hughes; Angela Hibbert; Andrew McC. Hogg; H. L. Johnson; L. Jullion; Brian A. King; Harry Leach; Yueng-Djern Lenn; M. A. Morales Maqueda; David R. Munday; Alberto C. Naveira Garabato; Christine Provost; Jean-Baptiste Sallée; Janet Sprintall

Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) in the Southern Ocean, with implications for global ocean circulation and climate. We review the long-term sustained monitoring programs that have been conducted at Drake Passage, dating back to the early part of the twentieth century. Attention is drawn to numerous breakthroughs that have been made from these programs, including (1) the first determinations of the complex ACC structure and early quantifications of its transport; (2) realization that the ACC transport is remarkably steady over interannual and longer periods, and a growing understanding of the processes responsible for this; (3) recognition of the role of coupled climate modes in dictating the horizontal transport and the role of anthropogenic processes in this; and (4) understanding of mechanisms driving changes in both the upper and lower limbs of the Southern Ocean overturning circulation and their impacts. It is argued that monitoring of this passage remains a high priority for oceanographic and climate research but that strategic improvements could be made concerning how this is conducted. In particular, long-term programs should concentrate on delivering quantifications of key variables of direct relevance to large-scale environmental issues: In this context, the time-varying overturning circulation is, if anything, even more compelling a target than the ACC flow. Further, there is a need for better international resource sharing and improved spatiotemporal coordination of the measurements. If achieved, the improvements in understanding of important climatic issues deriving from Drake Passage monitoring can be sustained into the future.


Journal of Climate | 2009

Variability of Subantarctic mode water and Antarctic intermediate water in the Drake Passage during the late-twentieth and early-twenty-first centuries

Alberto C. Naveira Garabato; L. Jullion; David P. Stevens; Karen J. Heywood; Brian A. King

A time series of the physical and biogeochemical properties of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the Drake Passage between 1969 and 2005 is constructed using 24 transects of measurements across the passage. Both water masses have experienced substantial variability on interannual to interdecadal time scales. SAMW is formed by winter overturning on the equatorward flank of the Antarctic Circumpolar Current (ACC) in and to the west of the Drake Passage. Its interannual variability is primarily driven by variations in wintertime air–sea turbulent heat fluxes and net evaporation modulated by the El Nino–Southern Oscillation (ENSO). Despite their spatial proximity, the AAIW in the Drake Passage has a very different source than that of the SAMW because it is ventilated by the northward subduction of Winter Water originating in the Bellingshausen Sea. Changes in AAIW are mainly forced by variability in Winter Water properties resulting from fluctuations in wintertime air–sea turbulent heat fluxes and spring sea ice melting, both of which are linked to predominantly ENSO-driven variations in the intensity of meridional winds to the west of the Antarctic Peninsula. A prominent exception to the prevalent modes of SAMW and AAIW formation occurred in 1998, when strong wind forcing associated with constructive interference between ENSO and the southern annular mode (SAM) triggered a transitory shift to an Ekman-dominated mode of SAMW ventilation and a 1–2-yr shutdown of AAIW production. The interdecadal evolutions of SAMW and AAIW in the Drake Passage are distinct and driven by different processes. SAMW warmed (by 0.3°C) and salinified (by 0.04) during the 1970s and experienced the reverse trends between 1990 and 2005, when the coldest and freshest SAMW on record was observed. In contrast, AAIW underwent a net freshening (by 0.05) between the 1970s and the twenty-first century. Although the reversing changes in SAMW were chiefly forced by a 30-yr oscillation in regional air–sea turbulent heat fluxes and precipitation associated with the interdecadal Pacific oscillation, with a SAM-driven intensification of the Ekman supply of Antarctic surface waters from the south contributing significantly too, the freshening of AAIW was linked to the extreme climate change that occurred to the west of the Antarctic Peninsula in recent decades. There, a freshening of the Winter Water ventilating AAIW was brought about by increased precipitation and a retreat of the winter sea ice edge, which were seemingly forced by an interdecadal trend in the SAM and regional positive feedbacks in the air–sea ice coupled climate system. All in all, these findings highlight the role of the major modes of Southern Hemisphere climate variability in driving the evolution of SAMW and AAIW in the Drake Passage region and the wider South Atlantic and suggest that these modes may have contributed significantly to the hemispheric-scale changes undergone by those waters in recent decades.


Geophysical Research Letters | 2010

Wind-controlled export of Antarctic Bottom Water from the Weddell Sea

L. Jullion; S. Jones; A. C. Naveira Garabato; M. P. Meredith

Recent studies suggest that the variability in Antarctic Bottom Water (AABW) properties in the Scotia Sea on time scales up to decadal may be linked to changes in the baroclinicity of the Weddell gyre, with vertical variations in the density structure at the gyres northern edge acting to control the export of AABW over the South Scotia Ridge and toward the mid-latitude South Atlantic. We test this hypothesis by analysing the AABW properties in fifteen occupations of the SR1b hydrographic section (1993-2009) in eastern Drake Passage alongside possible forcings as derived from atmospheric reanalysis data. We show that variability in the wind stress over the Weddell gyre leads changes in AABW properties in the SR1b section by approximately five months. The sign of the lagged correlation is consistent with the notion of the AABW export from the Weddell Sea being controlled by the gyres baroclinic adjustment to wind forcing on time scales of several months. Variability in the regional winds is found to be closely linked to the Southern Annular Mode (SAM). These results suggest that there may be a causal relationship between the SAMs positive tendency observed in recent decades and the subsequent warming of AABW detected across much of the Atlantic Ocean. Citation: Jullion, L., S. C. Jones, A. C. Naveira Garabato, and M. P. Meredith (2010), Wind-controlled export of Antarctic Bottom Water from the Weddell Sea, Geophys. Res. Lett., 37, L09609, doi: 10.1029/2010GL042822.


Journal of Climate | 2013

Decadal Freshening of the Antarctic Bottom Water Exported from the Weddell Sea

L. Jullion; Alberto C. Naveira Garabato; Michael P. Meredith; Paul R. Holland; Peggy Courtois; Brian A. King

Recent decadal changes in Southern Hemisphere climate have driven strong responses from the cryosphere. Concurrently, there has been a marked freshening of the shelf and bottom waters across a wide sector of the Southern Ocean, hypothesised to be caused by accelerated glacial melt in response to a greater flux of warm waters from the Antarctic Circumpolar Current onto the shelves of West Antarctica. However, the circumpolar pattern of changes has been incomplete: no decadal freshening in the deep layers of the Atlantic sector had been observed. In this study, we document a significant freshening of the Antarctic Bottom Water exported from the Weddell Sea, which is the source for the abyssal layer of the Atlantic overturning circulation, and we trace its possible origin to atmospheric-forced changes in the ice shelves and sea ice on the eastern flank of the Antarctic Peninsula that include an anthropogenic component. These findings suggest that the expansive and relatively cool Weddell gyre does not insulate the bottom water formation regions in the Atlantic sector from the ongoing changes in climatic forcing over the Antarctic region.


Journal of Geophysical Research | 2014

The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation

L. Jullion; Alberto C. Naveira Garabato; Sheldon Bacon; Michael P. Meredith; P. Brown; Sinhue Torres-Valdes; Kevin G. Speer; Paul R. Holland; Jun Dong; Dorothee C. E. Bakker; Mario Hoppema; Brice Loose; Hugh J. Venables; William J. Jenkins; Marie-José Messias; Eberhard Fahrbach

The horizontal and vertical circulation of the Weddell Gyre is diagnosed using a box inverse model constructed with recent hydrographic sections and including mobile sea ice and eddy transports. The gyre is found to convey 42 ± 8 Sv (1 Sv = 106 m3 s-1) across the central Weddell Sea and to intensify to 54±15 Sv further offshore. This circulation injects 36±13 TW of heat from the Antarctic Circumpolar Current to the gyre, and exports 51 ± 23 mSv of freshwater, including 13 ± 1 mSv as sea ice to the mid-latitude Southern Ocean. The gyres overturning circulation has an asymmetric double-cell structure, in which 13 ± 4 Sv of Circumpolar Deep Water (CDW) and relatively light Antarctic Bottom Water (AABW) are transformed into upper-ocean water masses by mid-gyre upwelling (at a rate of 2 ± 2 Sv) and into denser AABW by downwelling focussed at the western boundary (8 ± 2 Sv). The gyre circulation exhibits a substantial throughflow component, by which CDW and AABW enter the gyre from the Indian sector, undergo ventilation and densification within the gyre, and are exported to the South Atlantic across the gyres northern rim. The relatively modest net production of AABW in the Weddell Gyre (6±2 Sv) suggests that the gyres prominence in the closure of the lower limb of global oceanic overturning stems largely from the recycling and equatorward export of Indian-sourced AABW.


Geophysical Research Letters | 2011

Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre

Michael P. Meredith; Arnold L. Gordon; Alberto C. Naveira Garabato; E. Povl Abrahamsen; Bruce A. Huber; L. Jullion; Hugh J. Venables

[1] Antarctic Bottom Water (AABW), the densest water in the global overturning circulation, has warmed in recent decades, most notably in the Atlantic. Time series recorded within the boundary currents immediately upstream and downstream of the most significant outflow of AABW from the Weddell Sea indicate that raised outflow temperatures are synchronous with stronger boundary current flows. These changes occur rapidly in response to changes in wind forcing, suggesting that barotropic dynamics and the response of the bottom Ekman layer are significant. The observed synchronicity indicates that the previously‐detected weakening of the export of the colder forms of AABW from the Weddell Sea need not be associated with a reduction in the total flux of AABW exported via this route. These points need careful consideration when attributing the observed AABW warming in the Atlantic, and when determining its contribution to global heat budgets and sea level rise. Citation: Meredith, M. P., A. L. Gordon, A. C. Naveira Garabato, E. P. Abrahamsen, B. A. Huber, L. Jullion, and H. J. Venables (2011), Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre, Geophys. Res. Lett., 38, L03603, doi:10.1029/2010GL046265.


Journal of Physical Oceanography | 2010

Circulation and Water Mass Modification in the Brazil–Malvinas Confluence

L. Jullion; Karen J. Heywood; Alberto C. Naveira Garabato; David P. Stevens

Abstract The confluence between the Brazil Current and the Malvinas Current [the Brazil–Malvinas Confluence (BMC)] in the Argentine Basin is characterized by a complicated thermohaline structure favoring the exchanges of mass, heat, and salt between the subtropical gyre and the Antarctic Circumpolar Current (ACC). Analysis of thermohaline properties of hydrographic sections in the BMC reveals strong interactions between the ACC and subtropical fronts. In the Subantarctic Front, Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), and Circumpolar Deep Water (CDW) warm (become saltier) by 0.4° (0.08), 0.3° (0.02), and 0.6°C (0.1), respectively. In the subtropical gyre, AAIW and North Atlantic Deep Water have cooled (freshened) by 0.4° (0.07) and 0.7°C (0.11), respectively. To quantify those ACC–subtropical gyre interactions, a box inverse model surrounding the confluence is built. The model diagnoses a subduction of 16 ± 4 Sv (1 Sv ≡ 106 m3 s−1) of newly formed SAMW and AAIW under the subtro...


Journal of Geophysical Research | 2014

Boundary mixing in Orkney Passage outflow

Kurt L. Polzin; A. C. Naveira Garabato; E. P. Abrahamsen; L. Jullion; M. P. Meredith

One of the most remarkable features of contemporary oceanic climate change is the warming and contraction of Antarctic Bottom Water over much of global ocean abyss. These signatures represent changes in ventilation mediated by mixing and entrainment processes that may be location-specific. Here we use available data to document, as best possible, those mixing processes as Weddell Sea Deep and Bottom Waters flow along the South Orkney Plateau, exit the Weddell Sea via Orkney Passage and fill the abyssal Scotia Sea. First, we find that an abrupt transition in topography upstream of Orkney Passage delimits the extent of the coldest waters along the Plateaus flanks and may indicate a region of especially intense mixing. Second, we revisit a control volume budget by Heywood et al. (Nature, 2002) for waters trapped within the Scotia Sea after entering through Orkney Passage. This budget requires extremely vigorous water mass transformations with a diapycnal transfer coefficient of 39(±10) × 10-4 m2 s–1. Evidence for such intense diapycnal mixing is not found in the abyssal Scotia Sea interior and, while we do find large rates of diapycnal mixing in conjunction with a downwelling Ekman layer on the western side of Orkney Passage, it is insufficient to close the budget. This leads us to hypothesize that the Heywood budget is closed by a boundary mixing process in which the Ekman layer associated with the Weddell Sea Deep Water boundary current experiences relatively large-vertical-scale overturning associated with tidal forcing along the southern boundary of the Scotia Sea. This article is protected by copyright. All rights reserved.


Journal of Geophysical Research | 2016

Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

Brice Loose; William J. Jenkins; Roisin Moriarty; Peter J. Brown; L. Jullion; Alberto C. Naveira Garabato; Sinhue Torres Valdes; Mario Hoppema; Chris J. Ballentine; Michael P. Meredith

The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflect the boundary conditions near the ocean surface: air-sea exchange, sea ice formation and subsurface ice melt. We use a non-linear least-squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95 °C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44 °C at 5500 m, which is 1.5 °C warmer than the southern hemisphere deep water recharge temperature, reflecting the contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlight the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5 ‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a non-negligible impact on the atmospheric gas content of Antarctic Bottom Water.

Collaboration


Dive into the L. Jullion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Brown

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Mario Hoppema

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Meredith

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brice Loose

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge