L. Kurchaninov
TRIUMF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Kurchaninov.
Nature | 2012
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; P H Donnan; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. J. Nolan
The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
Nature | 2017
M. Ahmadi; B. X. R. Alves; C. J. Baker; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; S. Cohen; R. Collister; S. Eriksson; Andrew Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Akizumi Ishida; M. A. Johnson; Steve Jones; S. Jonsell; L. Kurchaninov; N. Madsen; M. Mathers
The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S–2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10−10.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1994
A. Holmes-Siedle; M. Robbins; S. Watts; Phillip Allport; R. Brenner; H.G. Moser; S. Roe; J. Straver; Peter Weilhammer; P. Chochula; I. Mikulec; S. Moszczynski; M. Turala; W. Dabrowski; P. Grybos; M. Idzik; D. Loukas; K. Misiakos; I. Siotis; K. Zachariadou; W. Dulinski; J. Michele; M. Schaeffer; R. Turchetta; P.S.L. Booth; J. Richardson; N.A. Smith; K. Gill; G. Hall; R. Sachdeva
Abstract The RD20 collaboration is investigating the design and operation of an LHC inner tracking detector based on silicon microstrips. Measurements have been made on prototype detectors after irradiation with electrons, neutrons, photons, and protons for doses up to 5 Mrad and fluences up to 10 15 particles/cm 2 . The annealing of effective doping changes caused by high neutron fluences, one of the major limits to detector lifetime at the LHC, is shown to be strongly inhibited by cooling below room temperature. Detailed results are presented on the critical issue of microstrip capacitance. We have also investigated bulk damage caused by high-energy protons, interstrip isolation after neutron irradiation, and MOS capacitors irradiated with electrons and photons.
Physical Review Letters | 2008
G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; Joel Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jørgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr
Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.
Nature | 2017
M. Ahmadi; B. X. R. Alves; C. J. Baker; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; S. Cohen; R. Collister; S. Eriksson; Andrew Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Akizumi Ishida; M. A. Johnson; Steve Jones; S. Jonsell; L. Kurchaninov; N. Madsen; M. Mathers
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge–parity–time in antimatter, and the techniques developed here will enable more-precise such tests.
Physics Letters B | 2011
G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. C. Chapman; M. Charlton; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; R. Hayano; M. E. Hayden; A. J. Humphries; R. Hydomako; Svante Jonsell; L. V. Jørgensen; L. Kurchaninov; R. Lambo; N. Madsen; S. Menary; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus
Abstract We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ∼30 ms. After a three-week experimental run in 2009 involving mixing of 10 7 antiprotons with 1.3 × 10 9 positrons to produce 6 × 10 5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.
Review of Scientific Instruments | 2009
G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; Joel Fajans; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; R. Hayano; M. E. Hayden; A. J. Humphries; R. Hydomako; L. V. Jørgensen; S. J. Kerrigan; L. Kurchaninov; R. Lambo; N. Madsen; P. J. Nolan; K. Olchanski; A. Olin; P. Pusa; E. Sarid; D. M. Silveira; J. W. Storey; R. I. Thompson
A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.
Nature | 2016
M. Ahmadi; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; Andrew Emile Charman; S. Eriksson; L. T. Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; A. Ishida; Steve Jones; Svante Jonsell; L. Kurchaninov; N. Madsen; D. Maxwell; J. T. K. McKenna; S. Menary; J. M. Michan
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms– of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10−21e for a diverse range of species including H2, He and SF6. Charge–parity–time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Journal of Physics B | 2008
G. B. Andresen; W. Bertsche; A. J. Boston; P. D. Bowe; C. L. Cesar; S. Chapman; M. Charlton; M. Chartier; A. Deutsch; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; K. Gomberoff; J. S. Hangst; R. Hayano; R. Hydomako; M. J. Jenkins; L. V. Jørgensen; L. Kurchaninov; N. Madsen; P. J. Nolan; K. Olchanski; A. Olin; R. D. Page; A. Povilus; F. Robicheaux; E. Sarid; D. M. Silveira; J. W. Storey
We have demonstrated production of antihydrogen in a 1 T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3 T) and ATRAP (5 T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the Antihydrogen Laser PHysics Apparatus (ALPHA) device, which can capture and cool antiprotons at 3 T, and then mix the antiprotons with positrons at 1 T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.
Nature Communications | 2014
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; M. Charlton; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa
The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects.