L. L. Pavlik
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. L. Pavlik.
Neuroscience | 1998
D. A. Moshkov; N. F. Mukhtasimova; L. L. Pavlik; N. R. Tiras; I.D Pakhotina
The potentiated afferent mixed synapses of the Mauthner cells of fry and adult goldfish in stumps of the medulla oblongata incubated long-term in vitro were studied by electrophysiological and electron microscopic methods. It was shown that brief high-frequency stimulation of posterior branches of the eighth nerve induced a long-term potentiation of electrotonic transmission at large and small mixed club endings. It was about 135% upon subthreshold stimulation and about 200% upon suprathreshold stimulation. The ultrastructural analysis of ultrathin sections of potentiated mixed synaptic endings revealed an increase in the dimensions of desmosome-like contacts which was proportional to the degree of potentiation, about 135% or 200%, depending on the type of stimulation. The dimensions of gap junctions remained unchanged. The dimensions of active zones at potentiated synapses were reduced two-fold as compared with their unpotentiated counterparts, irrespective of the type of stimulation. Considering that desmosome-like contacts consist predominantly of F-actin, a molecule which possesses electroconductivity, it can be assumed that this cytoskeletal protein is involved in the process of potentiation. The increase in the synapse electrical conductivity can be mediated either directly, by shunting the synaptic junction with polymer actin filaments in the region of desmosome-like contacts, or indirectly, via the interaction of actin with gap junction connections situated nearby.
Neurophysiology | 2003
D. A. Moshkov; L. L. Pavlik; N. R. Tiras; D. A. Dzeban; I. B. Mikheeva
We examined changes in the ultrastructure of afferent mixed synapses on the membrane of Mauthner neurons (M cells) of the goldfish, which were related to two functional states, long-term potentiation (LTP) of the electrotonic response (a model form of the memory trace) and adaptation (resistivity to fatigue resulting from long-lasting motor training and considered a natural form of the memory trace manifested on the neuronal level). LTP was induced in medullary slices using high-frequency electrical stimulation of the afferent input. Adaptation was produced using natural vestibular stimulation (everyday motor training, which modified motor behavior of the fish and function of the M cell). It was supposed that if the LTP phenomenon is involved in the formation of natural memory, both the adaptation and the LTP states should be accompanied by similar specific structural modifications. Indeed, it was found that in both cases the number of fibrillar bridges in the gaps of desmosome-like contacts (DLC) in the mixed synapses on the M cell surface demonstrated an about twofold increase. These bridges are known to include actin filaments, which function as conductors of cationic signals; thus, the LTP-related increase in the density of bridges corresponds to increased efficacy of electrotonic coupling via mixed synapses. Such a structural correlate of LTP, which probably has the same functional significance in mixed synapses of the “adapted” M cells, allows us to suppose that LTP is a natural property of the nervous system. The LTP-type intensification of the relay function of mixed synapses, which corresponds to adaptation, is probably a compensatory rearrangement allowing M cells to maintain some balance of the synaptic influences and, at the same time, to remain in a stable and plastic state; this is necessary for stable functioning under changing environmental conditions.
Neurophysiology | 2006
E. N. Bezgina; L. L. Pavlik; G. Z. Mikhailova; N. R. Tiras; S. N. Udal’tsov; V. S. Shubina; D. A. Moshkov
In the goldfish, we studied the effects of intramedullar applications of glutamate (Glu), dopamine (DA), and of long-lasting rotational stimulation on the functional activity, dimensional characteristics, and ultrastructure of Mauthner neurons (MNs). Applications of Glu, especially when combined with rotational stimulation, were found to result in suppression of the function of MNs, in a decrease in their dimensions and lengths of desmosome-like contacts (DLCs, whose structure is determined by filamentous actin) in afferent mixed and chemical synapses, and in destruction of actin microfilaments in the cytoskeleton of MNs. Applications of DA, vice versa, induced an increase in the resistance to the effects of long-lasting stimulation and stabilized the dimensions of MNs; the length of DLCs increased in afferent synapses of both the above types, and the number of fibrillar actin bridges in the DLC cleft of mixed synapses also increased. Bundles of the actin filaments, which were preserved after stimulation, appeared in the cytoskeleton of MNs. Testing of the action of neurotransmitters on actin preparations in vitro showed that Glu entirely depolymerizes filamentous actin, while DA, vice versa, polymerizes monomeric actin. Thus, the Glu-and DA-induced reactions are similar in their types and are of a reciprocal nature both in the actin cytoskeleton of MNs in situ and in purified actin in vitro; these effects correlate with suppression of the functional state of MNs under the influence of Glu and with stabilization of this state under the influence of DA. These results agree with the concept on the roles of depolymerization and polymerization of actin in changes of the morphofunctional state of MNs and show that actin of the cytoskeleton of MNs is a cellular target for the actions of Glu and DA. The similarity between the effects of tested neurotransmitters on actin in MNs in situ and in cell-free preparations in vitro allows us to hypothesize that these transmitters can penetrate into the neuron.
Biophysics | 2010
D. A. Moshkov; L. L. Pavlik; V. S. Shubina; E. Yu. Parnyshkova; I. B. Mikheeva
The interaction of dopamine with model membranes, isolated G-actin, and living cells, such as Mauthner neurons and fibroblast-like BHK-21 cells has been studied. It was found that in vitro dopamine passes through the phospholipid membrane and directly polymerizes G-actin due to incorporation into threads as their integral part. In in vivo conditions, it penetrates inside the cell and induces the appearance of a network of actin filaments in loci rich in globular actin. The data suggest that there exists a mechanism of dopamine interaction with living cells, which is based on direct polymerization of cytosolic G-actin as its cellular target. The reorganization of the actin cytoskeleton leads to changes in the morphofunctional status of cells.
Journal of Integrative Neuroscience | 2013
D. A. Moshkov; Rashid S. Shtanchaev; I. B. Mikheeva; Elena N. Bezgina; Nadezhda A. Kokanova; G. Z. Mikhailova; N. R. Tiras; L. L. Pavlik
Goldfish are known to exhibit motor asymmetry due to functional asymmetry of their Mauthner neurons that induce the turns to the right or left during free swimming. It has been previously found that if the less active neuron is subjected to prolonged aimed visual stimulation via its ventral dendrite, the motor asymmetry of goldfish is inverted, testifying that this neuron becomes functionally dominant, while the size of the ventral dendrite under these conditions is reduced 2-3 times compared to its counterpart in mirror neuron. Earlier it has been also revealed that training optokinetic stimulation induces adaptation, a substantial resistance of both fish motor asymmetry and morphofunctional state of Mauthner neurons against prolonged optokinetic stimulation. The aim of this work was to study the cellular mechanisms of the effect of an unusual visual afferent input on goldfish motor asymmetry and Mauthner neuron function in norm and under adaptation. It was shown that serotonin applied onto Mauthner neurons greatly reduces their activity whereas its antagonist ondansetron increases it. Against the background of visual stimulation, serotonin strengthens functional asymmetry between neurons whereas ondansetron smoothes it. Taken together these data suggest the involvement of serotonergic excitatory synaptic transmission in the regulation of Mauthner neurons by vision. Ultrastructural study of the ventral dendrites after prolonged optokinetic stimulation has revealed depletions of numeral axo-axonal synapses with specific morphology, identified by means of immunogold label as serotonergic ones. These latter in turn are situated mainly on shaft boutons, which according to specific ultrastructural features are assigned to axo-dendritic inhibitory synapses. Thus, the excitatory serotonergic synapses seem to affect Mauthner neuron indirectly through inhibitory synapses. Further, it was morphometrically established that adaptation is accompanied by the significant decrease of active zones dimensions in both serotonergic and inhibitory synapses. Finally, it was determined in model experiments that the interaction of globular actin with glycine, a main inhibitory neurotransmitter supposedly directly and chronically affecting the ventral dendrite, results in actin filaments formation. It is assumed that glycine-induced cytosolic actin polymerization is a cause of reduction in the ventral dendrite size under stimulation. Thus, it was established that a rather small group of synapses situated on an individual dendrite of the neuron determines the execution of the important form of animal behavior.
Bulletin of Experimental Biology and Medicine | 2013
D. A. Moshkov; S. P. Romanchenko; E. Yu. Parnyshkova; E. N. Bezgina; S. I. Zaichkina; L. L. Pavlik
Morphological studies showed that daily intraperitoneal injections of dopamine in doses of 10–2 and 10–1 M down-regulates the general number of cells in the Ehrlich ascites carcinoma in 10 and 30 times and decreases their diameter by 27% and 59%, respectively (as compared to the control animals received physiological saline). According to ultrastructural data these injections were followed by the abnormal changes in microvilluses, forming the specifi c moiré fringes in cytosol, thickening of cortical layer, and a signifi cant increase in fi lament reticulum density (actin fi bers) in tumor cells of treatment group specimens. We concluded that the oncocytotoxic effect of dopamine was related to the induced polymerization of cytosol actin.
Bulletin of Experimental Biology and Medicine | 2010
D. A. Moshkov; M. B. Abramova; V. S. Shubina; V. P. Lavrovskaya; L. L. Pavlik; E. I. Lezhnev
We studied the effects of dopamine added to culture medium on survival of floating or adherent BHK-21 cells differing by organization of actin cytoskeleton. The viability of floating cells more drastically decreased with increasing dopamine concentration and duration of exposure than that of adherent cells. The cells worse adhered to the substrate and formed a monolayer. The formed monolayer degrades, cell borders become blurred, cells, polygonal in the control, are rounded. Preliminary blockade of dopamine receptors with haloperidol, inessential for cell survival and morphology, does not prevent the destructive effect of dopamine on the cells. Ultrastructural study revealed increased density of filamentous actin threads in deep compartments of cell cytoplasm after dopamine treatment, this increase being more pronounced in cells grown in suspension. Bearing in mind the polymerizing effect of dopamine on globular actin in vitro and the fact that the content of this protein in floating cells is higher than in adherent cells, we can conclude that the decrease in viability of BHK-21 cells is caused by interaction of dopamine with cytoplasmic globular actin.
Neuroscience and Behavioral Physiology | 2004
D. A. Dzeban; N. F. Mukhtasimova; L. L. Pavlik; D. A. Moshkov
Electron microscopic morphometry was used to study the effects of long-term potentiation on the structure of fibrillar “cross-bridges” in the clefts of desmosome-like contacts in mixed synapses in Goldfish Mauthner neurons. These experiments showed that the number of bridges increased as the level of potentiation of electrotonic transmission increased. The structure of bridges changed after potentiation, which did not occur in controls (incubation). Double bridges appeared, which could have an altered (from control) organization within the cleft. The results obtained here and previously suggest that the bridges may be made of actin. Bridges are evidently a channel in which actin is organized as in nanotubules or plasmodesmata, and this may explain the stability of the bridge structure to treatment with cytochalasin and other external damaging factors which we have observed.
Biological Chemistry | 2016
Alexey A. Selin; N. V. Lobysheva; Semen V. Nesterov; Yulia A. Skorobogatova; Ivan M. Byvshev; L. L. Pavlik; I. B. Mikheeva; D. A. Moshkov; L. S. Yaguzhinsky; Yaroslav R. Nartsissov
Abstract The purpose of this work was to study the regulative role of the glutamate receptor found earlier in the brain mitochondria. In the present work a glutamate-dependent signaling system with similar features was detected in mitochondria of the heart. The glutamate-dependent signaling system in the heart mitochondria was shown to be suppressed by γ-aminobutyric acid (GABA). The GABA receptor presence in the heart mitochondria was shown by golding with the use of antibodies to α- and β-subunits of the receptor. The activity of glutamate receptor was assessed according to the rate of synthesis of hydrogen peroxide. The glutamate receptor in mitochondria could be activated only under conditions of hypoxic stress, which in model experiments was imitated by blocking Complex I by rotenone or fatty acids. The glutamate signal in mitochondria was shown to be calcium- and potential-dependent and the activation of the glutamate cascade was shown to be accompanied by production of hydrogen peroxide. It was discovered that H2O2 synthesis involves two complexes of the mitochondrial electron transfer system – succinate dehydrogenase (SDH) and fatty acid dehydrogenase (ETF:QO). Thus, functions of the glutamate signaling system are associated with the system of respiration-glycolysis switching (the Pasteur-Crabtree) under conditions of hypoxia.
Biophysics | 2012
E. Y. Parnyshkova; E. N. Bezgina; L. I. Kazakova; I. M. Vikhlyantsev; N. R. Tiras; L. L. Pavlik; D. A. Moshkov
Viability, histology and ultrastructure of normal cells and cells of different degrees of malignancy after interaction with dopamine as well as the ability of these cells and isolated G-actin in model experiments to stain by Falck technique were studied. It is shown that dopamine, virtually having no effect on the viability of the “normal” non-tumorigenic transformed cells, noticeably reduces cell viability of slightly tumorigenic cells, causes a significant reduction in viability of attachable cancerous cells and a very significant decrease in cell viability of cancerous cells growing in suspension. The intensity of fluorescence of the cytosol in cells treated with dopamine, has been very high and varied in different cultures, and that of isolated actin directly depended on its concentration. Common to all cell morphological feature of damage from the action of dopamine and the putative substrate of fluorescence was actodopamine filaments network strands (identified on the structure and size), which appears in the cytosol loci, where they were absent in control. The data show that dopamine can be used as an oncotherapeutic remedy and diagnostic tool interacting with G-actin as a cellular target.