Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. M. K. Vandersypen is active.

Publication


Featured researches published by L. M. K. Vandersypen.


Nature | 2001

Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance

L. M. K. Vandersypen; Matthias Steffen; Gregory Breyta; Costantino S. Yannoni; Mark H. Sherwood; Isaac L. Chuang

The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shors quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shors algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.


Reviews of Modern Physics | 2007

Spins in few-electron quantum dots

R. Hanson; Leo P. Kouwenhoven; J. R. Petta; S. Tarucha; L. M. K. Vandersypen

The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin is a magnetic moment pointing up or down. The full quantum properties of spin become apparent in phenomena such as superpositions of spin states, entanglement among spins, and quantum measurements. Many of these phenomena have been observed in experiments performed on ensembles of particles with spin. Only in recent years have systems been realized in which individual electrons can be trapped and their quantum properties can be studied, thus avoiding unnecessary ensemble averaging. This review describes experiments performed with quantum dots, which are nanometer-scale boxes defined in a semiconductor host material. Quantum dots can hold a precise but tunable number of electron spins starting with 0, 1, 2, etc. Electrical contacts can be made for charge transport measurements and electrostatic gates can be used for controlling the dot potential. This system provides virtually full control over individual electrons. This new, enabling technology is stimulating research on individual spins. This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist’s viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for 1 the rotation of an electron spin into a superposition of up and down, 2 the measurement of the quantum state of an individual spin, and 3 the control of the interaction between two neighboring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins i.e., single spintronics.


Nature Materials | 2008

Gate-induced insulating state in bilayer graphene devices

Jeroen B. Oostinga; Hubert B. Heersche; Xinglan Liu; Alberto F. Morpurgo; L. M. K. Vandersypen

The potential of graphene-based materials consisting of one or a few layers of graphite for integrated electronics originates from the large room-temperature carrier mobility in these systems (approximately 10,000 cm2 V(-1) s(-1)). However, the realization of electronic devices such as field-effect transistors will require controlling and even switching off the electrical conductivity by means of gate electrodes, which is made difficult by the absence of a bandgap in the intrinsic material. Here, we demonstrate the controlled induction of an insulating state--with large suppression of the conductivity--in bilayer graphene, by using a double-gate device configuration that enables an electric field to be applied perpendicular to the plane. The dependence of the resistance on temperature and electric field, and the absence of any effect in a single-layer device, strongly suggest that the gate-induced insulating state originates from the recently predicted opening of a bandgap between valence and conduction bands.


Nanoscale | 2015

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

A. C. Ferrari; Francesco Bonaccorso; Vladimir I. Fal'ko; K. S. Novoselov; Stephan Roche; Peter Bøggild; Stefano Borini; Vincenzo Palermo; Nicola Pugno; Jose A. Garrido; Roman Sordan; Alberto Bianco; Laura Ballerini; Maurizio Prato; Elefterios Lidorikis; Jani Kivioja; Claudio Marinelli; Tapani Ryhänen; Alberto F. Morpurgo; Jonathan N. Coleman; Valeria Nicolosi; Luigi Colombo; M. García-Hernández; Adrian Bachtold; Grégory F. Schneider; F. Guinea; Cees Dekker; Matteo Barbone; Zhipei Sun; C. Galiotis

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.


Nano Letters | 2010

DNA translocation through graphene nanopores.

Grégory F. Schneider; Stefan W. Kowalczyk; Victor E. Calado; Gregory Pandraud; Henny Zandbergen; L. M. K. Vandersypen; Cees Dekker

Nanopores--nanosized holes that can transport ions and molecules--are very promising devices for genomic screening, in particular DNA sequencing. Solid-state nanopores currently suffer from the drawback, however, that the channel constituting the pore is long, approximately 100 times the distance between two bases in a DNA molecule (0.5 nm for single-stranded DNA). This paper provides proof of concept that it is possible to realize and use ultrathin nanopores fabricated in graphene monolayers for single-molecule DNA translocation. The pores are obtained by placing a graphene flake over a microsize hole in a silicon nitride membrane and drilling a nanosize hole in the graphene using an electron beam. As individual DNA molecules translocate through the pore, characteristic temporary conductance changes are observed in the ionic current through the nanopore, setting the stage for future single-molecule genomic screening devices.


Nature | 2004

Single-shot read-out of an individual electron spin in a quantum dot

J. M. Elzerman; R. Hanson; L. H. Willems van Beveren; B. Witkamp; L. M. K. Vandersypen; Leo P. Kouwenhoven

Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is ∼65%. Furthermore, we observe very long single-spin energy relaxation times (up to ∼0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information.


Nature | 2007

Bipolar supercurrent in graphene

Hubert B. Heersche; Pablo Jarillo-Herrero; Jeroen B. Oostinga; L. M. K. Vandersypen; Alberto F. Morpurgo

Graphene—a recently discovered form of graphite only one atomic layer thick—constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e2/h (where e is the electron charge and h is Planck’s constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.


Nature | 2006

Driven coherent oscillations of a single electron spin in a quantum dot

Christo Buizert; Klaas-Jan Tielrooij; I.T. Vink; Katja C. Nowack; Tristan Meunier; Leo P. Kouwenhoven; L. M. K. Vandersypen

The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.


Reviews of Modern Physics | 2005

NMR techniques for quantum control and computation

L. M. K. Vandersypen; Isaac L. Chuang

Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. This article surveys and summarizes a broad variety of pulse control and tomographic techniques which have been developed for, and used in, NMR quantum computation. Many of these will be useful in other quantum systems now being considered for the implementation of quantum information processing tasks.


Science | 2007

Coherent Control of a Single Electron Spin with Electric Fields

Katja C. Nowack; Yu. V. Nazarov; L. M. K. Vandersypen

Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90° rotations as fast as ∼55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.

Collaboration


Dive into the L. M. K. Vandersypen's collaboration.

Top Co-Authors

Avatar

Werner Wegscheider

Solid State Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Leo P. Kouwenhoven

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Reichl

Solid State Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Hanson

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. M. Elzerman

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I.T. Vink

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

S. N. Coppersmith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Katja C. Nowack

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pasquale Scarlino

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge