L. M. Lara
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. M. Lara.
Journal of Geophysical Research | 1996
L. M. Lara; E. Lellouch; J. J. Lopez-Moreno; R. Rodrigo
The vertical distribution of Titans neutral atmosphere compounds is calculated from a new photochemical model extending from 40 to 1432 km. This model makes use of many updated reaction rates, and of the new scheme for methane photolysis proposed by Mordaunt et al. [1993]. The model also includes a realistic treatment of the dissociation of N 2 , of the deposition of water in the atmosphere from meteoritic ablation, and of condensation processes. The sensitivity of the results to the eddy diffusion coefficient profile is investigated. Fitting the methane thermospheric profile and the stratospheric abundance of the major hydrocarbons requires a methane stratospheric mixing ratio of 1.5-2% rather than 3%. Fitting the HCN stratospheric profile requires an eddy diffusion coefficient at 100-300 km that is 5-20 times larger than that necessary for the hydrocarbons. Most species are reasonably well reproduced, with the exception of CH 3 C 2 H and HC 3 N. The formation of CH 3 CN may involve the reaction of CN with either CH 4 or (preferably) C 2 H 6 . The observed CO 2 profile can be modeled by assuming an external source of water of ∼6 × 10 6 cm -2 s -1 . For a nominal CO mixing ratio of 5 × 10 -5 , the chemical loss of CO exceeds its production by ∼15%, and equilibrium is achieved for CO = 1 × 10 -5 .
The Astrophysical Journal | 2001
G. Giovannini; W. D. Cotton; L. Feretti; L. M. Lara; T. Venturi
A complete sample of 27 radio galaxies was selected from the B2 and 3CR catalogs in order to study their properties on the milliarcsecond scale. In the Appendix of this paper we present new radio images for 12 of them. Thanks to the present data, all the sources in this sample have been imaged at milliarcsecond resolution. We discuss the general results. In particular we stress the evidence for high-velocity jets in low-power radio galaxies, compare high- and low-power sources, and discuss the source properties in light of the unified scheme models. We conclude that the properties of parsec-scale jets are similar in sources with different total radio power and kiloparsec-scale morphology. From the core-total radio power correlation, we estimate that relativistic jets with Lorentz factor ? in the range 3-10 are present in high- and low-power radio sources. We discuss also the possible existence of a two-velocity structure (fast spine and lower velocity external shear layer).
Astronomy and Astrophysics | 2015
Frank Preusker; Frank Scholten; Klaus-Dieter Matz; Thomas Roatsch; Konrad Willner; S. F. Hviid; J. Knollenberg; L. Jorda; Pedro J. Gutierrez; Ekkehard Kührt; S. Mottola; Michael F. A'Hearn; Nicolas Thomas; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; M. A. Barucci; I. Bertini; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; S. Fornasier; M. Fulle
We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9−2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3. With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet’s center-of-mass, we extrapolated this value to an overall volume of 18.7 km3 ± 1.2 km3, and, with a current best estimate of 1.0 × 1013 kg for the mass, we derive a bulk density of 535 kg/m3 ± 35 kg/m3. Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 ± 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14◦, a cone center position at 69.54◦/64.11◦ (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35◦ right-hand-rule eastern longitude and –0.28◦ latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.
Science | 2011
H. Sierks; P. L. Lamy; Cesare Barbieri; D. Koschny; Hans Rickman; R. Rodrigo; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; B. Carry; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. de León; F. Ferri; S. Fornasier; M. Fulle; S. F. Hviid; Robert W. Gaskell; Olivier Groussin; Pedro J. Gutierrez; Wing-Huen Ip; L. Jorda; Mikko Kaasalainen; H. U. Keller
A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
Nature | 2005
M. Küppers; I. Bertini; S. Fornasier; Pedro J. Gutierrez; S. F. Hviid; L. Jorda; Horst Uwe Keller; J. Knollenberg; D. Koschny; R. Kramm; L. M. Lara; H. Sierks; Nicolas Thomas; Cesare Barbieri; P. L. Lamy; Hans Rickman; R. Rodrigo
Comets spend most of their life in a low-temperature environment far from the Sun. They are therefore relatively unprocessed and maintain information about the formation conditions of the planetary system, but the structure and composition of their nuclei are poorly understood. Although in situ and remote measurements have derived the global properties of some cometary nuclei, little is known about their interiors. The Deep Impact mission shot a projectile into comet 9P/Tempel 1 in order to investigate its interior. Here we report the water vapour content (1.5 × 1032 water molecules or 4.5 × 106 kg) and the cross-section of the dust (330 km2 assuming an albedo of 0.1) created by the impact. The corresponding dust/ice mass ratio is probably larger than one, suggesting that comets are ‘icy dirtballs’ rather than ‘dirty snowballs’ as commonly believed. High dust velocities (between 110 m s-1 and 300 m s-1) imply acceleration in the comets coma, probably by water molecules sublimated by solar radiation. We did not find evidence of enhanced activity of 9P/Tempel 1 in the days after the impact, suggesting that in general impacts of meteoroids are not the cause of cometary outbursts.
Astronomy and Astrophysics | 2015
Nicholas Thomas; B. Davidsson; M. R. El-Maarry; S. Fornasier; Lorenza Giacomini; A.G. Gracia Berna; S. F. Hviid; Wing-Huen Ip; L. Jorda; H. U. Keller; J. Knollenberg; E. Kührt; F. La Forgia; I.-L. Lai; Ying Liao; R. Marschall; Matteo Massironi; S. Mottola; M. Pajola; Olivier Poch; Antoine Pommerol; Frank Preusker; Frank Scholten; C. C. Su; J.-S. Wu; Jean-Baptiste Vincent; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo
We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nu- cleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that “airfall” as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.
Science | 2010
H. U. Keller; Cesare Barbieri; D. Koschny; P. L. Lamy; Hans Rickman; R. Rodrigo; H. Sierks; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; G. Cremonese; V. Da Deppo; B. Davidsson; M. De Cecco; Stefano Debei; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; S. F. Hviid; Wing-Huen Ip; L. Jorda; J. Knollenberg; J.-R. Kramm; E. Kührt; M. Küppers; L. M. Lara; M. Lazzarin; J. J. Lopez Moreno; Francesco Marzari
Smooth Space Pebble In September 2008, on its way to meet comet 67P/Churyumov-Gerasimenko, the Rosetta spacecraft flew by asteroid Steins, a member of a very rare class of asteroids that had never been observed closely by spacecraft. Keller et al. (p. 190) analyzed the images to generate a reconstruction of the asteroids shape. Steins is oblate with an effective spherical diameter of 5.3 kilometers, and it lacks small craters, which may have been erased by surface reshaping. Indeed, Steinss shape resembles that of a body that was spun-up by the YORP effect—a torque produced by incident sunlight, which can alter the rotation rate of a small body—that causes material to slide toward the equator. This effect may have produced Steinss distinctive diamond-like shape. Incident sunlight probably caused this asteroid to spin, which redistributed its mass and smoothed its surface. The European Space Agency’s Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
Astronomy and Astrophysics | 2016
Jean-Baptiste Vincent; N. Oklay; M. Pajola; S. Höfner; H. Sierks; X. Hu; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Michael F. A'Hearn; Maria Antonietta Barucci; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; M. R. El-Maarry; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; P. Gutiérrez-Marquez; C. Güttler; M. Hofmann
Dust jets (i.e., fuzzy collimated streams of cometary material arising from the nucleus) have been observed in situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986, and yet their formation mechanism remains unknown. Several solutions have been proposed involving either specific properties of the active areas or the local topography to create and focus the gas and dust flows. While the nucleus morphology seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller jets (a few meters wide) that connect directly to the nucleus surface. Aims. We monitored these jets at high resolution and over several months to understand what the physical processes are that drive their formation and how this affects the surface. Methods. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets and linked them precisely to their sources on the nucleus. Results. We show here observational evidence that the northern hemisphere jets of comet 67P/Churyumov-Gerasimenko arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features and therefore of the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
The Astrophysical Journal | 2016
M. Fulle; Francesco Marzari; V. Della Corte; S. Fornasier; H. Sierks; Alessandra Rotundi; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; J. J. Lopez-Moreno; M. Accolla; Jessica Agarwal; Michael F. A’Hearn; Nicolas Altobelli; M. A. Barucci; J.-L. Bertaux; I. Bertini; D. Bodewits; E. Bussoletti; L. Colangeli; Massimo Cosi; G. Cremonese; J.-F. Crifo; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco
The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov–Gerasimenko, has been detecting individual dust particles of mass larger than 10−10 kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes >1 mm observed by OSIRIS is consistent with a differential power index of −4, which was derived from models of 67Ps trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from −2 beyond 2 au to −3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.
Astronomy and Astrophysics | 2014
S. Mottola; S. C. Lowry; C. Snodgrass; P. L. Lamy; I. Toth; A. Rożek; H. Sierks; Michael F. A’Hearn; F. Angrilli; Cesare Barbieri; M. A. Barucci; J.-L. Bertaux; G. Cremonese; V. Da Deppo; B. Davidsson; M. De Cecco; Stefano Debei; S. Fornasier; M. Fulle; Olivier Groussin; Pedro J. Gutierrez; S. F. Hviid; Wing-Huen Ip; L. Jorda; H. U. Keller; J. Knollenberg; D. Koschny; R. Kramm; E. Kührt; M. Küppers
Aims: Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67Ps nucleus. Methods: Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results: Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane. Table 1 is available in electronic form at http://www.aanda.org