Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.M.P. Fernandes is active.

Publication


Featured researches published by L.M.P. Fernandes.


Physical Review Letters | 2011

Search for light dark matter in XENON10 data.

J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; C. E. Dahl; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; A. Manzur; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J.M.F. dos Santos

We report results of a search for light (≲10  GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42)  cm(2), for a dark matter particle mass m(χ)=7  GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Science | 2013

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini; F. Nez; Karsten Schuhmann; F. D. Amaro; F. Biraben; João Cardoso; D.S. Covita; A. Dax; Satish Dhawan; Marc Diepold; L.M.P. Fernandes; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Cheng-Yang Kao; P. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller

Proton Still Too Small Despite a protons tiny size, it is possible to measure its radius based on its charge or magnetization distributions. Traditional measurements of proton radius were based on the scattering between protons and electrons. Recently, a precision measurement of a line in the spectrum of muonium—an atom consisting of a proton and a muon, instead of an electron—revealed a radius inconsistent with that deduced from scattering studies. Antognini et al. (p. 417; see the Perspective by Margolis) examined a different spectral line of muonium, with results less dependent on theoretical analyses, yet still inconsistent with the scattering result; in fact, the discrepancy increased. A precision spectroscopic measurement of the proton radius indicates a growing discrepancy with respect to scattering results. [Also see Perspective by Margolis] Accurate knowledge of the charge and Zemach radii of the proton is essential, not only for understanding its structure but also as input for tests of bound-state quantum electrodynamics and its predictions for the energy levels of hydrogen. These radii may be extracted from the laser spectroscopy of muonic hydrogen (μp, that is, a proton orbited by a muon). We measured the 2S1/2F=0-2P3/2F=1 transition frequency in μp to be 54611.16(1.05) gigahertz (numbers in parentheses indicate one standard deviation of uncertainty) and reevaluated the 2S1/2F=1-2P3/2F=2 transition frequency, yielding 49881.35(65) gigahertz. From the measurements, we determined the Zemach radius, rZ = 1.082(37) femtometers, and the magnetic radius, rM = 0.87(6) femtometer, of the proton. We also extracted the charge radius, rE = 0.84087(39) femtometer, with an order of magnitude more precision than the 2010-CODATA value and at 7σ variance with respect to it, thus reinforcing the proton radius puzzle.


Physical Review Letters | 2008

Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment

J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; C. E. Dahl; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; K. L. Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; A. Manzur; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J.M.F. dos Santos

XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.


Physical Review D | 2009

Constraints on inelastic dark matter from XENON10

J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; C. E. Dahl; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; A. Manzur; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J.M.F. dos Santos

It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E{sub nr} = 75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses m{sub x} {approx}> 150 GeV are disfavored.


Science | 2016

Laser spectroscopy of muonic deuterium

Randolf Pohl; F. Nez; L.M.P. Fernandes; F. D. Amaro; F. Biraben; João Cardoso; D. S. Covita; A. Dax; Satish Dhawan; Marc Diepold; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Paul E. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller; Karsten Schuhmann; Catherine Schwob

The deuteron is too small, too The radius of the proton has remained a point of debate ever since the spectroscopy of muonic hydrogen indicated a large discrepancy from the previously accepted value. Pohl et al. add an important clue for solving this so-called proton radius puzzle. They determined the charge radius of the deuteron, a nucleus consisting of a proton and a neutron, from the transition frequencies in muonic deuterium. Mirroring the proton radius puzzle, the radius of the deuteron was several standard deviations smaller than the value inferred from previous spectroscopic measurements of electronic deuterium. This independent discrepancy points to experimental or theoretical error or even to physics beyond the standard model. Science, this issue p. 669 The charge radius of the deuteron is several standard deviations smaller than the previously accepted value. The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.


Journal of Instrumentation | 2007

Secondary scintillation yield in pure xenon

C.M.B. Monteiro; L.M.P. Fernandes; J. A. M. Lopes; L. Coelho; J.F.C.A. Veloso; J.M.F. dos Santos; Karl-Ludwig Giboni; E. Aprile

The xenon secondary scintillation yield was studied as a function of the electric field in the scintillation region, in a gas proportional scintillation counter operated at room temperature. A large area avalanche photodiode was used for the readout of the VUV secondary scintillation produced in the gas, together with the 5.9 keV x-rays directly absorbed in the photodiode. The latter was used as a reference for the determination of the number of charge carriers produced by the scintillation pulse and, thus, the number of VUV photons impinging the photodiode. A value of 140 photons/kV was obtained for the scintillation amplification parameter. The attained results are in good agreement with those predicted, for room temperature, by Monte Carlo simulation and Boltzmann calculations, as well as with those obtained for saturated xenon vapour, at cryogenic temperatures, and are about a factor of two higher than former results measured at room temperature.


Sensors and Actuators A-physical | 1995

LARGE-AREA 1D THIN-FILM POSITION-SENSITIVE DETECTOR WITH HIGH DETECTION RESOLUTION

Elvira Fortunato; G. Lavareda; Rodrigo Martins; F. Soares; L.M.P. Fernandes

Abstract The aim of this work is to present the main optoelectronic characteristics of large-area one-dimensional position-sensitive detectors (1D TFPSDs) based on amorphous silicon (a-Si) p-i-n diodes. From that, the device resolution, response time and detectivity (defined as being the reciprocal of the noise equivalent power pattern) are derived and discussed concerning the field of applications of the 1D TFPSDs.


Journal of High Energy Physics | 2015

First proof of topological signature in high pressure xenon gas with electroluminescence amplification

P. Ferrario; D. Lorca; J.J. Gómez-Cadenas; G. Martínez-Lema; A. Martínez; J.F. Toledo; V. Álvarez; R. Esteve; S. Cebrián; A. Para; A. Cervera; F.P. Santos; E.D.C. Freitas; C.A.N. Conde; A. Laing; L. Ripoll; J. T. White; S. Cárcel; V.M. Gehman; P. Novella; A. L. Ferreira; P. Lebrun; F.J. Mora; F. Monrabal; A. Simón; A. Goldschmidt; N. López-March; D. Shuman; I.G. Irastorza; M. Querol

A bstractThe NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype.Single electrons resulting from the interactions of 22Na 1275 keV gammas and electronpositron pairs produced by conversions of gammas from the 228Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1.% for signal events.


Advances in High Energy Physics | 2014

Present Status and Future Perspectives of the NEXT Experiment

J. J. Gómez Cadenas; V. Álvarez; F.I.G.M. Borges; S. Cárcel; J. Castel; S. Cebrián; A. Cervera; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R. Esteve; P. Evtoukhovitch; L.M.P. Fernandes; P. Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; D. González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; F. J. Iguaz; I. G. Irastorza; M A Jinete

NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009

The scintillation and ionization yield of liquid xenon for nuclear recoils

P. Sorensen; A. Manzur; C. E. Dahl; J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli

XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield View the MathML source and the absolute ionization yield View the MathML source, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of View the MathML source is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our View the MathML source measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is View the MathML source. A knowledge of the ionization yield View the MathML source is necessary to establish the trigger threshold of the experiment. The ionization yield View the MathML source is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

Collaboration


Dive into the L.M.P. Fernandes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cárcel

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.J. Gómez-Cadenas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

S. Cebrián

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar

V. Álvarez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Díaz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge