L. M. Polyanskaya
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. M. Polyanskaya.
Microbiology | 2002
L. M. Polyanskaya; O. T. Vedina; L. V. Lysak; D. G. Zvyagintsev
New strains of Beijerinckia mobilis and Clostridium sp. isolated from the pea rhizosphere were studied with respect to their promoting effect on the growth and development of some agricultural crops. Seed soaking in bacterial suspensions followed by the soil application of the suspensions or their application by means of foliar spraying was found to be the most efficient method of bacterization. The application of B. mobilis andClostridium sp. cultures in combination with mineral fertilizers increased the crop production by 1.5–2.5 times. The study of the population dynamics of B. mobilis by the method of genetic marking showed that this bacterium quickly colonized the rhizoplane of plants and, therefore, had characteristics of an r-strategist. At the same time, Clostridiumsp. was closer to K-strategists, since this bacterium slowly colonized the econiches studied. The introduction of the bacteria into soil did not affect the indigenous soil bacterial complex. The presence of Clostridium sp. slowed down the colonization of roots by the fungal mycelium. The possible mechanisms of the plant growth–promoting activity of B. mobilisand Clostridiumsp. are discussed.
Eurasian Soil Science | 2015
T. G. Dobrovol’skaya; D. G. Zvyagintsev; I. Yu. Chernov; A. V. Golovchenko; G. M. Zenova; L. V. Lysak; N. A. Manucharova; O. E. Marfenina; L. M. Polyanskaya; A. L. Stepanov; M. M. Umarov
The results of long-term investigations performed by researchers from the Department of Soil Biology at the Faculty of Soil Science of Moscow State University into one of the major functions of soil microorganisms—sustenance of the turnover of matter and energy in the biosphere—are discussed. Data on the population densities of soil microbes and on the microbial biomass in different types of soils are presented. The systemic approach has been applied to study the structural-functional organization of the soil microbial communities. The role of eukaryotic and prokaryotic microorganisms in the carbon and nitrogen cycles is elucidated. It is argued that the high population density and diversity of microorganisms are necessary to maintain the turnover of chemical elements in terrestrial ecosystems. The viability of microbes stored in the soils is important. New data on the preservation and survival of bacteria in nanoforms are presented. It is shown that peatlands and paleosols are natural banks, where microbes can be preserved in a viable state for tens of thousands years.
Microbiology | 2008
N. D. Ananyeva; L. M. Polyanskaya; E. A. Susyan; I. V. Vasenkina; S. Wirth; D. G. Zvyagintsev
The content of microbial biomass (MB) was determined in samples of gray forest, chestnut, and tundra soils with different physicochemical properties (0.4–22.7% Corg; 8.4–26.8% silt particles; pH 4.3–8.4) by the methods of substrate-induced respiration (MBSIR) and direct microscopy (MBM). The samples of two upper soil layers, 0–5 and 5–10 cm (without plant litter), from different ecosystems (forest, forest shelter belt, meadow, fallow, and arable) and elements of relief of interfluvial tundra (block/upper land plateau, depression between blocks) have been analyzed. The content of microbial biomass in the 0–5-cm soil layer was 216–8134 and 348–7513 μg C/g soil as measured by the methods of substrate-induced respiration and direct microscopy, respectively. The MBSIR and MBM values closely correlated with each other: r = 0.90 and 0.74 for 0–5 and 5–10 cm, respectively. The average MBSIR/MBM ratio was 90 and 60% for 0–5 and 5–10 cm, respectively. The portion of microbial carbon in total organic soil carbon was, on average, 4 and 3% (SIR) and 5 and 7% (direct microscopy) for 0–5 and 5–10 cm, respectively. Possible reasons for the differences between MBSIR and MBM values in the soils under study are discussed.
Microbiology | 2008
L. M. Polyanskaya; K. E. Ivanov; V. S. Guzev; D. G. Zvyagintsev
Bacterial succession in soil was studied for two variants of initiation (moistening and moistening with addition of glucose). To determine the numbers of viable gram-negative bacteria, the modified nalidixic acid method was applied. The numbers of gram-negative bacteria revealed by this method were 2 to 3.5 times higher than those determined by the traditional method. In a developing community, the highest total bacterial numbers were observed on day 7; afterwards their numbers decreased and stabilized at a level exceeding four-to fivefold the initial one. In both experimental variants, the highest numbers of viable gram-negative bacteria were revealed on day 15 (75–85% of the total bacterial numbers). Morphology of these bacteria suggests their classification as cytophagas (chitinophagas) utilizing chitin from the dead fungal mycelium.
Eurasian Soil Science | 2006
O. A. Fomicheva; L. M. Polyanskaya; V. V. Nikonov; N. V. Lukina; M. A. Orlova; L. G. Isaeva; D. G. Zvyagintsev
The number and biomass of microorganisms in the soils under lichen, grass-bilberry, and grass spruce forests of old age were studied on the Kola Peninsula. The dry biomass of microorganisms in the organic soil horizons was shown to reach 28 mg/g with a predominance (96 to 99%) of micromycetes. At tree trunk sites, in the organic horizons of all the soils studied, where the contents of organic carbon and mineral nutrients were higher, the number and biomass of all the groups of microorganisms was lower than in those in the soils of the gaps. The factors limiting the functioning of microorganisms in the soils under spruce tree crowns are thought to be the high acidity of the water flowing down the tree trunks and the high phenol content in it. In the mineral horizons of the soils, the patterns of the microorganisms were opposite: in all the spruce forests, the fungal biomass was the highest in the soils of the trunk zones, as well as the bacterial population and biomass in the grass spruce forest. In the latter, the maximal length of the actinomycete mycelium was also recorded in the soil of the trunk zones with the elevated contents of carbon and mineral nutrients.
Eurasian Soil Science | 2012
L. M. Polyanskaya; N. I. Sukhanova; K. V. Chakmazyan; D. G. Zvyagintsev
The number and biomass of various groups of microorganisms in fallow soils is greater as compared to plowed soils. The microbial biomass in all fallow and plowed soils is dominated by fungal mycelium (from 90% in the top horizons to 97% in the lower ones). The part of spores in the fungal biomass is higher in plowed soils (from 9% in the top horizons to 4% in the lower ones) as compared to fallow soils (3.5–6%). The fallow soils are characterized by the greater part of prokaryotic microorganisms in the biomass, and the reserves and structure of the microbial biomass are more similar to those in the undisturbed soils. These characteristics changed during a ten-year-long period in a soddy-calcareous soil and during a 25-year-long period in a leached chernozem.
Eurasian Soil Science | 2006
V. V. Nikonov; N. V. Lukina; L. M. Polyanskaya; O. A. Fomicheva; L. G. Isaeva; D. G. Zvyagintsev
In the organic horizons of the Al-Fe-humus podzols under the old pine forests of the northern taiga, the biomass of all the groups of microorganisms, the length of the fungal and actinomycete mycelium, the number of fungal spores, and the bacterial population were maximal (13 mg/g) irrespectively of the stage of pyrogenic succession. The share of fungi (mainly, of basidiomycetes) exceeded 90%. In the mineral root-inhabited soil horizons, the biomass of microorganisms was not greater than 1.0 mg/g. The soil under the lichen pine forest had the smallest biomass of microorganisms as compared to the soil under the pine forests that were not exposed to fire for a long time. At all the stages of the pyrogenic succession, the most favorable conditions for the functioning of microorganisms were in the root-inhabited horizons of the soils in near-stem sites due to the accumulation of nutrients there. In the soils of these zones, the basidiomycete biomass was greater than that in the soils of the gaps. In the mineral soil horizons, buckleless micromycetes demonstrated the same trend. No distinct parcella differences, with respect to the soil nutrient regime, were found only for the prokaryotes. The fungi in the Al-Fe-humus podzols may be used as indicators for the pyrogenic succession stages of forest ecosystems. At the early stages, micromycetes without buckles prevailed, and, in the course of succession, the share of basidiomycetes clearly increased. The density and structure of mycorrhiza were tightly related to the nutrient regime of the soils. The increase in the concentration of available biogenic elements in the root-inhabited soil horizons did not cause the necessity of developing complex mycorrhiza forms.
Eurasian Soil Science | 2010
L. M. Polyanskaya; M. A. Gorbacheva; E. Yu. Milanovskii; D. G. Zvyagintsev
A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.
Eurasian Soil Science | 2015
L. M. Polyanskaya; I. P. Pinchuk; D. G. Zvyagintsev
Soddy-podzolic, gray forest, brown forest, primitive Antarctic soils, typical chernozems, and solonchaks were studied. Many ultrafine bacterial cells, along with fine ones, were found in all the soils studied. The gray forest, brown forest, and primitive Antarctic soils were especially distinguished in this respect. Formerly, in the works on soil microbiology, the fact of the cell size reduction was insufficiently taken into account because of the absence of reliable methods. A decrease in the number and biomass of bacteria down the profile in all the soils, except for the solonchak, was shown. In the solonchak, the bacterial number and biomass increases with decreasing salinity of the soil horizons. The bacterial biomass mainly depends on the predominance of cells of definite sizes (0.38 and 0.23 μm). In the B1fungi horizon of the primitive Antarctic soil, a considerable number of large (1.85 μm) bacterial cells was recorded, and this resulted in the maximal microbial biomass in this horizon. The data on the average volume of a cell correlate with those on the number and biomass of bacteria. The largest diameters of cells were registered in the humus and B1fungi horizons of the primitive Antarctic soil.
Eurasian Soil Science | 2013
N. I. Sukhanova; S. Ya. Trofimov; L. M. Polyanskaya; N. V. Larin; V. N. Larin
The exhalation of hydrogen out of the earth’s deep sediments in the areas usually confined to tectonic fractures has been investigated. In places of hydrogen exhalation, ring-shaped structures of subsidence are formed. They are well identified on satellite images. The concentrations of molecular hydrogen measured in the field exceed to a great extent its probable production in soils. The soils influenced by two factors—a flux of molecular hydrogen and temporary waterlogging—are shown to degrade rapidly. The humus content decreases by 2–3 times; the optical density of the humic acids drops significantly; and the humus distribution, according to the morphological features, points to its high mobility. On the whole, hydrogen emissions inhibit the microbial activity resulting in a drastic decrease of the total microbial biomass and a greater contribution of bacteria to its structure. In a model experiment with hydrogen passing through a soil column, the bleaching of the soil by 2% and some reduction in the optical density of the humic acids were recorded.