Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. M. Shao is active.

Publication


Featured researches published by L. M. Shao.


Nuclear Fusion | 2014

Study of the L–I–H transition with a new dual gas puff imaging system in the EAST superconducting tokamak

Guosheng Xu; L. M. Shao; Shaojin Liu; H. Q. Wang; B.N. Wan; H.Y. Guo; P. H. Diamond; G. R. Tynan; M. Xu; Stewart J. Zweben; V. Naulin; Anders Henry Nielsen; J. Juul Rasmussen; N. Fedorczak; P. Manz; K. Miki; N. Yan; R. Chen; Bingqiang Cao; L. Chen; Lianzhou Wang; W. Zhang; X.Z. Gong

The intermediate oscillatory phase during the L–H transition, termed the I-phase, is studied in the EAST superconducting tokamak using a newly developed dual gas puff imaging (GPI) system near the L–H transition power threshold. The experimental observations suggest that the oscillatory behaviour appearing at the L–H transition could be induced by the synergistic effect of the two components of the sheared m, n = 0 E × B flow, i.e. the turbulence-driven zonal flow (ZF) and the equilibrium flow. The latter arises from the equilibrium, and is, to leading order, balanced by the ion diamagnetic term in the radial force balance equation. A slow increase in the poloidal flow and its shear at the plasma edge are observed tens of milliseconds prior to the I-phase. During the I-phase, the turbulence recovery appears to originate from the vicinity of the separatrix with clear wave fronts propagating both outwards into the far scrape-off layer (SOL) and inwards into the core plasma. The turbulence Reynolds stress is directly measured using the GPI system during the I-phase, providing direct evidence of kinetic energy transfer from turbulence to ZFs at the plasma edge. The GPI observations strongly suggest that the SOL transport physics and the evolution of pressure gradient near the separatrix play an important role in the L–I–H transition dynamics. To highlight these new physics, the previous predator–prey model is extended to include a new equation for the SOL physics. The model successfully reproduces the L–I–H transition process with several features comparing favourably with GPI observations.


Nuclear Fusion | 2014

Scaling of divertor power footprint width in RF-heated type-III ELMy H-mode on the EAST superconducting tokamak

Lianzhou Wang; H.Y. Guo; Guosheng Xu; Shaojin Liu; Kaifu Gan; H. Q. Wang; X.Z. Gong; Y. Liang; X.L. Zou; J.S. Hu; L. Chen; Jichan Xu; J.B. Liu; N. Yan; W. Zhang; R. Chen; L. M. Shao; S. Ding; G. H. Hu; W. Feng; N. Zhao; L.Y. Xiang; Y. Liu; Yan Li; Chaofeng Sang; Jizhong Sun; Dezhen Wang; H. Ding; Guang-Nan Luo; Jianing Chen

Dedicated experiments for the scaling of divertor power footprint width have been performed in the ITER-relevant radiofrequency (RF)-heated H-mode scheme under the lower single null, double null and upper single null divertor configurations in the Experimental Advanced Superconducting Tokamak (EAST) under lithium wall coating conditioning. A strong inverse scaling of the edge localized mode (ELM)-averaged power fall-off width with the plasma current (equivalently the poloidal field) has been demonstrated for the attached type-III ELMy H-mode as λq ∝ I −1.05 p by various heat flux diagnostics including the divertor Langmuir probes (LPs), infra-red (IR) thermograph and reciprocating LPs on the low-field side. The IR camera and divertor LP measurements show that λq,IR ≈ λq,div-LPs/1.3 = 1.15B −1.25 p,omp , in good agreement with the multi-machine scaling trend during the inter-ELM phase between type-I ELMs or ELM-free enhanced Dα (EDA). H-mode. However, the magnitude is nearly doubled, which may be attributed to the different operation scenarios or heating schemes in EAST, i.e., dominated by electron heating. It is also shown that the type-III ELMs only broaden the power fall-off width slightly, and the ELM-averaged width is representative for the inter-ELM period. Furthermore, the inverse Ip (Bp) scaling appears to be independent of the divertor configurations in EAST. The divertor power footprint integral width, fall-off width and dissipation width derived from EAST IR camera measurements follow the relation, λint ∼ λq +1.64S, yielding λ EAST = (1.39±0.03)λ EAST +(0.97±0.35) mm. Detailed analysis of these three characteristic widths was carried out to shed more light on their extrapolation to ITER.


Physics of Plasmas | 2012

Divertor asymmetry and scrape-off layer flow in various divertor configurations in Experimental Advanced Superconducting Tokamak

S. Liu; H.Y. Guo; G. Xu; X. Gao; Sizheng Zhu; H. Q. Wang; L. Wang; N. Yan; Dongsheng Wang; Pengfei Liu; M. Jiang; Wuxiong Zhang; Tingfeng Ming; J. F. Chang; S. Ding; H. Xiong; L. M. Shao; Zhiwei Wu; G.-N. Luo; East Team

Divertor asymmetry and its dependence on the ion ▿B direction has been investigated in the Experimental Advanced Superconducting Tokamak by changing the divertor configuration from lower single null (LSN), via double null (DN), to upper single null (USN) during one single discharge. Divertor plasmas exhibit the usual in-out asymmetry in particle and heat fluxes in LSN with the ion ▿B direction toward the lower X-point, favoring the outer divertor, especially at high density. The in-out asymmetry is reversed when changing the divertor configuration from LSN to USN, thus clearly demonstrating the effect of classical drifts. DN exhibits an even stronger in-out divertor asymmetry, favoring the outer divertor. A significant top-down asymmetry is also seen for DN, with greater particle and heat fluxes to the bottom divertor. In addition, the parallel plasma flow has been measured by a fast moving Mach probe at the outer midplane, which shows similar magnitude to the Pfirsch-Schluter flow. Its contribution to th...


Physics of Plasmas | 2015

Fast electron flux driven by lower hybrid wave in the scrape-off layer

Yan Li; Guosheng Xu; H. Q. Wang; C. Xiao; Baonian Wan; Zhe Gao; R. Chen; Ling-Jian Wang; Kaifu Gan; J. H. Yang; Xiaotao Zhang; Shaojin Liu; M. H. Li; S. Ding; N. Yan; W. Zhang; G. H. Hu; Y. Liu; L. M. Shao; J.G. Li; L. Chen; Ning Zhao; J. C. Xu; Qingquan Yang; H. Lan; Yang Ye

The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m2 and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n|| components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau d...


Physics of Plasmas | 2012

First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

G. Xu; H. Q. Wang; Bo Wan; H.Y. Guo; V. Naulin; P. H. Diamond; G. R. Tynan; M. Xu; N. Yan; Wuxiong Zhang; J. F. Chang; L. Wang; R. Chen; S. Liu; S. Ding; L. M. Shao; H. Xiong; Zhao Hl

A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05–1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H98y,2 ∼ 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.


Physics of Plasmas | 2014

Three dimensional nonlinear simulations of edge localized modes on the EAST tokamak using BOUT++ code

Z. X. Liu; X.Q. Xu; X. Gao; T. Y. Xia; I. Joseph; W. H. Meyer; S. C. Liu; Guosheng Xu; L. M. Shao; S. Y. Ding; Guoqiang Li; J.G. Li

Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.


Nuclear Fusion | 2016

In–out asymmetry of divertor particle flux in H-mode with edge localized modes on EAST

J.B. Liu; H.Y. Guo; L. Wang; G. Xu; T.Y. Xia; S. Liu; X.Q. Xu; Jie Li; L. Chen; N. Yan; H. Q. Wang; Jichan Xu; W. Feng; L. M. Shao; G. Z. Deng; H.Q. Liu; East Probe Team

The in–out divertor asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), as manifested by particle fluxes measured by the divertor triple Langmuir probe arrays, is significantly enhanced during type-I edge localized modes (ELMs), favoring the inner divertor in lower single null (LSN) for the normal toroidal field (B t) direction, i.e. with the ion B × B direction towards the lower X-point, while the in–out asymmetry is reversed when the ion B × B is directed away from the lower X-point. The plasma flow measured by the Mach probe at the outer midplane is in the ion Pfirsch–Schluter (PS) flow direction, opposite to both B × B and E × B drifts, i.e. towards the inner divertor for normal B t, and the outer divertor for reverse B t, consistent with the observed in–out divertor asymmetry in particle fluxes. Since the particle source from an ELM event is predominantly located near the outer midplane, this new finding suggests a critical role of the PS flow in driving the in–out divertor asymmetry. The divertor asymmetry during type-III ELMs exhibits a similar trend to that during type-I ELMs. Strong in–out divertor asymmetry is also present during inter-ELM and ELM-free phases for the normal field direction, i.e. with more particle flux to the lower inner divertor target, but the peak particle flux merely becomes more symmetric, or slightly reversed, for reverse B t, i.e. reversed B × B drift direction.


Physics of Plasmas | 2014

Edge-coherent-mode nature of the small edge localized modes in Experimental Advanced Superconducting Tokamak

H. Q. Wang; Gang Xu; H.Y. Guo; Bo Wan; L. Wang; R. Chen; S. Ding; N. Yan; X.Z. Gong; Shujie Liu; L. M. Shao; L. Chen; Wuxiong Zhang; Y. Liang; G. H. Hu; Y. Liu; Y.L. Li; Ning Zhao

High-confinement regime with high-frequency and low-energy-loss small edge localized modes (ELMs) was achieved in Experimental Advanced Superconducting Tokamak by using the lower hybrid current drive and ion cyclotron resonance heating with lithium wall conditioning. The small ELMs are usually accompanied with a quasi-coherent mode at frequency around 30 kHz, as detected by the Langmuir probes near the separatrix. The coherent mode, with weak magnetic perturbations different from the precursor of conventional ELMs, propagates in the electron diamagnetic drift direction in the lab frame with the poloidal wavelength λθ ∼ 14 cm, corresponding to both high poloidal and toroidal mode numbers (m > 60 and n > 12). This coherent mode, carrying high-temperature high-density filament-like plasma, drives considerable transport from the pedestal region into the scrape-off layer towards divertor region. The co-existence of small ELMs and quasi-coherent modes is beneficial for the sustainment of long pulse H-mode regime without significant confinement degradation.


Physics of Plasmas | 2014

Influence of helium puff on divertor asymmetry in Experimental Advanced Superconducting Tokamak

Shaojin Liu; H.Y. Guo; Guosheng Xu; Ling-Jian Wang; H. Q. Wang; R. Ding; Yixiang Duan; Kaifu Gan; L. M. Shao; L. Chen; Ning Yan; W. Zhang; R. Chen; H. Xiong; S. Ding; G. H. Hu; Y. Liu; N. Zhao; Yan Li; X. Gao

Divertor asymmetries with helium puffing are investigated in various divertor configurations on Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected into the edge plasma, the power deposition drops sharply at the lower outer target while increases gradually at the lower inner target in LSN configuration; the power deposition increases quickly at the upper outer target while remains unchanged at the upper inner target in upper single null configuration; the power deposition increases slightly at the outer targets while shows no obvious variation at the inner targets in double null configuration. The radiated power measured by the extreme ultraviolet arrays increases significantly due to helium gas injection, especially in the outer divertor. The edge parameters are measured by reciprocating probes at the outer midplane, showing that the electron temperature and density increase but the parallel Mach number decreases significantly due to the gas injection. Effects of poloidal E × B drifts and parallel SOL flows on the divertor asymmetry observed in EAST are also discussed.


Nuclear Fusion | 2014

Enhanced-recycling H-mode regimes with edge coherent modes achieved by RF heating with lithium-wall conditioning in the EAST superconducting tokamak

H. Q. Wang; G. Xu; H.Y. Guo; Bo Wan; R. Chen; S. Ding; N. Yan; L. Wang; X.Z. Gong; S. Liu; L. M. Shao; L. Chen; Wuxiong Zhang; G. H. Hu; Y. Liu; Y.L. Li; Ning Zhao

Two enhanced-recycling H-mode regimes, named low-enhanced-recycling (LER) and high-enhanced-recycling (HER) H-mode regimes, with edge coherent modes, have been achieved by lower hybrid current drive and ion cyclotron resonance heating with lithium-wall conditioning in the EAST superconducting tokamak. In the LER H-mode regime, the density and radiation increase during the ELM-free phase until the onset of edge-localized modes (ELMs), while in the HER H-mode regime, the density and radiation are well controlled without the presence of ELMs. Both LER and HER H-modes exhibit a low-frequency (frequency 170?kHz appears shortly (<1?ms) after the transition during HER H-modes. Both ECM and HFM propagate in the electron diamagnetic drift direction in the lab frame with a low poloidal wavelength and may be responsible for enhanced recycling during the ELM-free phase. These two enhanced-recycling H-mode regimes may have significant implications for long-pulse high-performance operations in future fusion experiments.

Collaboration


Dive into the L. M. Shao's collaboration.

Top Co-Authors

Avatar

N. Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

H. Q. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

R. Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

G. H. Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

G. Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wuxiong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Wan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge