L. N. da Costa
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. N. da Costa.
The Astrophysical Journal | 2004
Mauro Giavalisco; Henry C. Ferguson; Anton M. Koekemoer; Mark Dickinson; D. M. Alexander; F. E. Bauer; Jacqueline Bergeron; C. Biagetti; W. N. Brandt; Stefano Casertano; Catherine J. Cesarsky; Eleni T. Chatzichristou; Christopher J. Conselice; S. Cristiani; L. N. da Costa; Tomas Dahlen; Duilia Fernandes de Mello; Peter R. M. Eisenhardt; T. Erben; S. M. Fall; C. D. Fassnacht; Robert A. E. Fosbury; Andrew S. Fruchter; Jonathan P. Gardner; Norman A. Grogin; Richard N. Hook; A. E. Hornschemeier; Rafal Idzi; S. Jogee; Claudia Kretchmer
This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.
Astronomy and Astrophysics | 2005
Léo Girardi; M. A. T. Groenewegen; E. Hatziminaoglou; L. N. da Costa
We describe TRILEGAL, a new populations synthesis code for simulating the stellar photometry of any Galaxy field. The code attempts to improve upon several technical aspects of star count models, by: dealing with very complete input libraries of evolutionary tracks; using a stellar spectral library to simulate the photometry in virtually any broad-band system; being very versatile allowing easy changes in the input libraries and in the description of all of its ingredients - like the star formation rate, age-metallicity relation, initial mass function, and geometry of Galaxy components. In a previous paper (Groenewegen et al. 2002, Paper I), the code was first applied to describe the very deep star counts of the CDFS stellar catalogue. Here, we briefly describe its initial calibration using EIS-deep and DMS star counts, which, as we show, are adequate samples to probe both the halo and the disc components of largest scale heights (oldest ages). We then present the changes in the calibration that were necessary to cope with some improvements in the model input data, and the use of more extensive photometry datasets: now the code is shown to successfully simulate also the relatively shallower 2MASS catalogue, which probes mostly the disc at intermediate ages, and the immediate solar neighbourhood as sampled by Hipparcos - in particular its absolute magnitude versus colour diagram -, which contains a somewhat larger fraction of younger stars than deeper surveys. Remarkably, the same model calibration can reproduce well the star counts in all the above-mentioned data sets, that span from the very deep magnitudes of CDFS (16 < R < 23) to the very shallow ones of Hipparcos (V < 8). Significant deviations (above 50 percent in number counts) are found just for fields close to the Galactic Center (since no bulge component was included) and Plane, and for a single set of South Galactic Pole data. The TRILEGAL code is ready to use for the variety of wide-angle surveys in the optical/infrared that will become available in the coming years.
The Astrophysical Journal | 2015
K. Bechtol; A. Drlica-Wagner; E. Balbinot; A. Pieres; J. D. Simon; Brian Yanny; B. Santiago; Risa H. Wechsler; Joshua A. Frieman; Alistair R. Walker; P. Williams; Eduardo Rozo; Eli S. Rykoff; A. Queiroz; E. Luque; A. Benoit-Lévy; Douglas L. Tucker; I. Sevilla; Robert A. Gruendl; L. N. da Costa; A. Fausti Neto; M. A. G. Maia; T. D. Abbott; S. Allam; R. Armstrong; A. Bauer; G. M. Bernstein; R. A. Bernstein; E. Bertin; David J. Brooks
We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.
The Astrophysical Journal | 2011
Martin White; Michael R. Blanton; Adam S. Bolton; David J. Schlegel; Jeremy L. Tinker; Andreas A. Berlind; L. N. da Costa; Eyal A. Kazin; Yen-Ting Lin; M. A. G. Maia; Cameron K. McBride; Nikhil Padmanabhan; John K. Parejko; Will J. Percival; F. Prada; Beatriz H. F. Ramos; E. Sheldon; F. de Simoni; Ramin A. Skibba; Daniel Thomas; David A. Wake; Idit Zehavi; Zheng Zheng; Robert C. Nichol; Donald P. Schneider; Michael A. Strauss; Benjamin A. Weaver; David H. Weinberg
We calculate the real- and redshift-space clustering of massive galaxies at z ∼ 0.5 using the first semester of data by the Baryon Oscillation Spectroscopic Survey (BOSS). We study the correlation functions of a sample of 44,000 massive galaxies in the redshift range 0.4 <z< 0.7. We present a halo-occupation distribution modeling of the clustering results and discuss the implications for the manner in which massive galaxies at z ∼ 0.5 occupy dark matter halos. The majority of our galaxies are central galaxies living in halos of mass 10 13 h −1 M� ,b ut 10% are satellites living in halos 10 times more massive. These results are broadly in agreement with earlier investigations of massive galaxies at z ∼ 0.5. The inferred large-scale bias (b � 2) and relatively high number density ( ¯ n = 3 × 10 −4 h 3 Mpc −3 ) imply that BOSS galaxies are excellent tracers of large-scale structure, suggesting BOSS will enable a wide range of investigations on the distance scale, the growth of large-scale structure, massive galaxy evolution, and other topics.
The Astrophysical Journal | 2000
David R. Patton; R. G. Carlberg; R. O. Marzke; C. J. Pritchet; L. N. da Costa; P. S. Pellegrini
The galaxy merger and accretion rates, and their evolution with time, provide important tests for models of galaxy formation and evolution. Close pairs of galaxies are the best available means of measuring redshift evolution in these quantities. In this study, we introduce two new pair statistics, which relate close pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, Nc, gives the number of companions per galaxy within a specified range in absolute magnitude. Nc is directly related to the galaxy merger rate. The second statistic, Lc, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both Nc and Lc are related to the galaxy correlation function ξ and luminosity function (M) in a straightforward manner. Both statistics have been designed with selection effects in mind. We outline techniques that account for various selection effects and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for reasonable ranges in luminosity), then these statistics may be applied to flux-limited surveys. These techniques are applied to a sample of 5426 galaxies in the Second Southern Sky Redshift Survey (SSRS2). This is the first large, well-defined low-z survey to be used for pair statistics. Using close (5 h-1 kpc ≤ rp ≤ 20 h-1 kpc) dynamical (Δv ≤ 500 km s-1) pairs, we find Nc(-21 ≤ MB ≤ -18) = 0.0226 ± 0.0052 and Lc(-21 ≤ MB ≤ -18) = 0.0216 ± 0.0055 × 1010 h2 L☉ at z = 0.015. These are the first secure estimates of low-redshift pair statistics, and they will provide local benchmarks for ongoing and future pair studies. If Nc remains fixed with redshift, simple assumptions imply that ~6.6% of present day galaxies with -21 ≤ MB ≤ -18 have undergone mergers since z = 1. When applied to redshift surveys of more distant galaxies, these techniques will yield the first robust estimates of evolution in the galaxy merger and accretion rates.
The Astronomical Journal | 1997
Riccardo Giovanelli; Martha P. Haynes; Terry L. Herter; Nicole P. Vogt; Gary Wegner; John J. Salzer; L. N. da Costa; Wolfram Freudling
Observational parameters which can be used for redshift-independent distance determination using the Tully-Fisher (TF) technique are given for 782 spiral galaxies in the fields of 24 clusters or groups. I band photometry for the full sample was either obtained by us or compiled from published literature. Rotational velocities are derived either from 21 cm spectra or optical emission line long--slit spectra, and converted to a homogeneous scale. In addition to presenting the data, a discussion of the various sources of error on TF parameters is introduced, and the criteria for the assignment of membership to each cluster are given. The construction of a TF template, bias corrections and cluster motions are discussed in an accompanying paper.
The Astrophysical Journal | 2015
A. Drlica-Wagner; K. Bechtol; E. S. Rykoff; E. Luque; A. Queiroz; Yao-Yuan Mao; Risa H. Wechsler; J. D. Simon; B. Santiago; Brian Yanny; E. Balbinot; Scott Dodelson; A. Fausti Neto; D. J. James; T. S. Li; M. A. G. Maia; J. L. Marshall; A. Pieres; Katelyn Stringer; Alistair R. Walker; Timothy M. C. Abbott; F. B. Abdalla; S. Allam; A. Benoit-Lévy; G. M. Bernstein; E. Bertin; David J. Brooks; Elizabeth J. Buckley-Geer; D. L. Burke; A. Carnero Rosell
We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (MV > −4.7
The Astronomical Journal | 2013
Gail Zasowski; Jennifer A. Johnson; Peter M. Frinchaboy; Steven R. Majewski; David L. Nidever; H. J. Rocha Pinto; Léo Girardi; Brett H. Andrews; S. D. Chojnowski; Kyle M. Cudworth; Kelly M. Jackson; Jeffrey A. Munn; M. F. Skrutskie; Rachael L. Beaton; Cullen H. Blake; Kevin R. Covey; Rohit Deshpande; Courtney R. Epstein; D. Fabbian; Scott W. Fleming; D. A. García–Hernández; A. Herrero; Sankaran Mahadevan; Sz. Mészáros; Mathias Schultheis; K. Sellgren; Ryan C. Terrien; J. van Saders; C. Allende Prieto; Dmitry Bizyaev
\mathrm{mag}
The Astrophysical Journal | 1996
C. Benoist; S. Maurogordato; L. N. da Costa; A. Cappi; R. Schaeffer
) and span a range of physical sizes (17
Monthly Notices of the Royal Astronomical Society | 2014
Carles Sánchez; M. Carrasco Kind; H. Lin; R. Miquel; F. B. Abdalla; Adam Amara; Mandakranta Banerji; C. Bonnett; Robert J. Brunner; D. Capozzi; A. Carnero; Francisco J. Castander; L. N. da Costa; C. E. Cunha; A. Fausti; D. W. Gerdes; N. Greisel; J. Gschwend; W. Hartley; S. Jouvel; Ofer Lahav; M. Lima; M. A. G. Maia; Pol Martí; R. Ogando; F. Ostrovski; P. S. Pellegrini; M. M. Rau; I. Sadeh; S. Seitz
\mathrm{pc}