L. N. Plummer
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. N. Plummer.
Water Resources Research | 1993
S. A. Dunkle; L. N. Plummer; Eurybiades Busenberg; P. J. Phillips; J. M. Denver; P. A. Hamilton; Robert L. Michel; Tyler B. Coplen
Concentrations of the chlorofluorocarbons (CFCs) CFC-11 and CFC-12 were determined in groundwater from coastal plain sediments of the Delmarva Peninsula. CFC-modeled ages were calculated independently for CFC-11 and CFC-12, and agreed to within 2-3 years in the majority of the waters. Recharge temperatures, determined from dissolved nitrogen and argon concentrations, varied from + or - 2 degrees C over most of the peninsula to 14 + or - 2 degrees C at the southernmost tip of the peninsula in Virginia. The CFC-modeled ages were examined in relation to the known hydrogeologic environment, both on regional scales and in more intensively sampled local scale networks. The CFC-modeled recharge years and measured tritium concentrations were used to reconstruct a tritium input function that was compared to the modeled tritium plus [sup 3]He distribution. Most of the present distribution of tritium in Delmarva groundwater is consistent with low dispersivities. The results of this study strongly support the use of CFCs for dating shallow, aerobic groundwater.
Water Resources Research | 1996
Z. Szabo; D. E. Rice; L. N. Plummer; Eurybiades Busenberg; Stefan Drenkard; Peter Schlosser
Groundwater age dating through the combination of transient tracer methods (chlorofluorocarbons (CFCs) and tritium/helium 3 (3H/3He)) and groundwater flow path analysis is useful for investigating groundwater travel times, flow patterns, and recharge rates, as demonstrated by this study of the homogeneous shallow, unconfined Kirkwood-Cohansey aquifer system in the southern New Jersey coastal plain. Water samples for age dating were collected from three sets of nested observation wells (10 wells) with 1.5-m-long screens located near groundwater divides. Three steady state finite difference groundwater flow models were calibrated by adjusting horizontal and vertical hydraulic conductivities to match measured heads and head differences (range, 0.002–0.23 m) among the nested wells, with a uniform recharge rate of 0.46 m per year and porosities of 0.35 (sand) and 0.45 (silt) that were assumed constant for all model simulations and travel time calculations. The simulated groundwater travel times increase with depth in the aquifer, ranging from about 1.5 to 6.5 years for the shallow wells (screen bottoms 3–4 m below the water table), from about 10 to 25 years for the medium-depth wells (screen bottoms 8–19 m below the water table), and from about 30 to more than 40 years for the deep wells (screen bottoms 24–26 m below the water table). Apparent groundwater ages based on CFC- and 3H/3He-dating techniques and model-based travel times could not be statistically differentiated, and all were strongly correlated with depth. Confinement of 3He was high because of the rapid vertical flow velocity (of the order of 1 m/yr), resulting in clear delineation of groundwater travel times based on the 3H/3He-dating technique. The correspondence between the 3H/3He and CFC ages indicates that dispersion has had a minimal effect on the tracer-based ages of water in this aquifer. Differences between the tracer-based apparent ages for seven of the 10 samples were smaller than the error values. A slight bias toward older apparent ages, found not to be statistically significant, was noted for the 3H/3He-dating technique relative to the CFC-dating technique. This result may be caused by enrichment of local air in CFC-Il and CFC-12 from urban and industrial sources in the northeastern United States and minor contamination from sampling equipment. The demonstrated validity of the combined tracer-dating techniques to determine the age of water in the Kirkwood-Cohansey aquifer system indicates that groundwater flow models can be refined when apparent ages based on 3H/3He- and CFC- dating are used as calibration targets.
Water Resources Research | 1998
E. Modica; H. T. Buxton; L. N. Plummer
A conceptual model of the patterns and residence times of groundwater seepage to gaining streams indicates that groundwater seepage originates from sources that are both near and far from the stream. Consequently, the age of groundwater seepage across a stream-channel transect increases from its banks to its center and becomes progressively older with distance downstream. A groundwater flow model and particle-tracking analysis of the Cohansey River Basin in the New Jersey Coastal Plain supports this conceptual model and demonstrates that the orientation of the stream channels with respect to the regional groundwater flow direction, and the heterogeneities of the aquifer and stream-channel patterns, can shift source area locations and distributions of groundwater residence time from those expected. Groundwater samples collected from stream transects were analyzed for nitrogen, representative of widespread agricultural land use in the basin in recent decades, and for chlorofluorocarbons, used to estimate groundwater ages. The patterns of nitrogen concentration and the age of groundwater entering the stream channel corroborate model inferences. The conceptual model of groundwater seepage to streams presented herein is relevant to unconfined aquifer systems with gaining streams and demonstrates how nonpoint-source contaminants are transported to streams by groundwater. Results are useful for the design of programs needed to monitor stream-water quality.
Water Resources Research | 1996
Peter G. Cook; D. K. Solomon; William E. Sanford; Eurybiades Busenberg; L. N. Plummer; Robert J. Poreda
The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short-term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr−1. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.
Water Resources Research | 1977
L. N. Plummer
Ground Water | 2000
L. N. Plummer; Michael G. Rupert; Eurybiades Busenberg; Peter Schlosser
Water Resources Research | 2007
Klaus Hinsby; Anker Lajer Højberg; Peter Engesgaard; Karsten H. Jensen; Flemming Larsen; L. N. Plummer; Eurybiades Busenberg
Archive | 2006
Eurybiades Busenberg; L. N. Plummer; D. K. Solomon; L Han; M Groning; H Oster; Peter G. Cook
Archive | 2006
L. N. Plummer; Peter G. Cook; Eurybiades Busenberg; L Han; D. K. Solomon
Archive | 2006
L. N. Plummer; Peter G. Cook; Eurybiades Busenberg
Collaboration
Dive into the L. N. Plummer's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs