Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Nellen is active.

Publication


Featured researches published by L. Nellen.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004

The offline software framework of the Pierre Auger Observatory

Stefano Argiro; L. Nellen; T. Paul; T.A. Porter; L. Prado

The Pierre Auger Observatory is designed to unveil the nature and the origins of the highest energy cosmic rays. The large and geographically dispersed collaboration of physicists and the wide-ranging collection of simulation and reconstruction tasks pose some special challenges for the offline analysis software. We have designed and implemented a general purpose framework which allows collaborators to contribute algorithms and sequencing instructions to build up the variety of applications they require. The framework includes machinery to manage these user codes, to organize the abundance of user-contributed configuration files, to facilitate multi-format file handling, and to provide access to event and time-dependent detector information which can reside in various data sources. A number of utilities are also provided, including a novel geometry package which allows manipulation of abstract geometrical objects independent of coordinate system choice. The framework is implemented in C++, and takes advantage of object oriented design and common open source tools, while keeping the user side simple enough for C++ novices to learn in a reasonable time. The distribution system incorporates unit and acceptance testing in order to support rapid development of both the core framework and contributed user code


Physical Review D | 1993

Neutrino production through hadronic cascades in AGN accretion disks.

L. Nellen; K. Mannheim; Peter L. Biermann

We consider the production of neutrinos in active galactic nuclei through hadronic cascades. The initial, high-energy nucleons are accelerated in a source above the accretion disk around the central black hole. From the source, the particles diffuse back to the disk and initiate hadronic cascades through pp interactions. The observable output from the caascade is electromagnetic radiation and neutrinos. We use the observed diffuse background x-ray luminosity, which presumably results from this process, to predict the diffuse neutrino flux close to the existing limits from the Frejus experiment. The resulting neutrino spectrum is E −2 down to the GeV region. We discuss modifications of this scenario which reduce the predicted neutrino flux


The Astrophysical Journal | 2014

OBSERVATION OF SMALL-SCALE ANISOTROPY IN THE ARRIVAL DIRECTION DISTRIBUTION OF TeV COSMIC RAYS WITH HAWC

A. U. Abeysekara; R. Alfaro; C. Alvarez; J. D. Álvarez; R. Arceo; J.C. Arteaga-Velázquez; H. A. Ayala Solares; A. S. Barber; B.M. Baughman; N. Bautista-Elivar; E. Belmont; S. BenZvi; D. Berley; M. Bonilla Rosales; J. Braun; K. S. Caballero-Mora; A. Carramiñana; M. Castillo; U. Cotti; J. Cotzomi; E. de la Fuente; C. De León; T. DeYoung; R. Diaz Hernandez; J. C. Díaz-Vélez; B. L. Dingus; M. A. DuVernois; R. W. Ellsworth; D.W. Fiorino; N. Fraija

The High-Altitude Water Cherenkov (HAWC) Observatory is sensitive to gamma rays and charged cosmic rays at TeV energies. The detector is still under construction, but data acquisition with the partially deployed detector started in 2013. An analysis of the cosmic-ray arrival direction distribution based on 4.9 × 1010 events recorded between 2013 June and 2014 February shows anisotropy at the 10–4 level on angular scales of about 10°. The HAWC cosmic-ray sky map exhibits three regions of significantly enhanced cosmic-ray flux; two of these regions were first reported by the Milagro experiment. A third region coincides with an excess recently reported by the ARGO-YBJ experiment. An angular power spectrum analysis of the sky shows that all terms up to l = 15 contribute significantly to the excesses.


Nuclear Physics | 1991

Half-string oscillator approach to string field theory

J. Bordes; Chan Hong-Mo; L. Nellen; Tsou Sheung Tsun

Abstract We give an operator formulation of the string field theory proposed by E. Witten using half-string oscillator modes. This formalism, identifying the physical string states as infinite matrices, is developed in such a way that interactions at the level of vertices can be calculated in terms of products and traces of these matrices without relying on ill-defined manipulations of functional integrals.


The Astrophysical Journal | 2015

Search for Gamma-Rays from the Unusually Bright GRB 130427A with the HAWC Gamma-Ray Observatory

A. U. Abeysekara; R. Alfaro; C. Alvarez; J. D. Álvarez; R. Arceo; J.C. Arteaga-Velázquez; H. A. Ayala Solares; A. S. Barber; B.M. Baughman; N. Bautista-Elivar; S. BenZvi; M. Bonilla Rosales; J. Braun; K. S. Caballero-Mora; A. Carramiñana; M. Castillo; U. Cotti; J. Cotzomi; E. de la Fuente; C. De León; T. DeYoung; R. Diaz Hernandez; B. L. Dingus; M. A. DuVernois; R. W. Ellsworth; D.W. Fiorino; N. Fraija; A. Galindo; F. Garfias; M. M. González

The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the >100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.


Physics Letters B | 1996

Axial couplings on the world-line

Myriam Mondragon; L. Nellen; Michael G. Schmidt; Christian Schubert

Abstract We construct a world-line representation for the fermionic one-loop effective action with axial and also vector, scalar, and pseudo-scalar couplings. We use this expression to compute a few selected scattering amplitudes. These allow us to verify that our method yields the same results as standard field theory. In particular, we are able to reproduce the chiral anomaly. Our starting point is the second order formulation for the Dirac fermion. We translate the second order expressions into a world-line action.


The Astrophysical Journal | 2016

Search for TeV Gamma-Ray Emission from Point-like Sources in the Inner Galactic Plane with a Partial Configuration of the HAWC Observatory

A. U. Abeysekara; R. Alfaro; C. Alvarez; J. D. Álvarez; R. Arceo; J. C. Arteaga-Velá Zquez; H. A. Ayala Solares; A. S. Barber; B.M. Baughman; N. Bautista-Elivar; A. D Becerril Reyes; E. Belmont; S. BenZvi; Abel Bernal; J. Braun; K. S. Caballero-Mora; T. Capistrán; A. Carramiñana; S. Casanova; M. Castillo; U. Cotti; J. Cotzomi; S. Coutiño de León; E. de la Fuente; C. De León; T. DeYoung; R. Diaz Hernandez; B. L. Dingus; M. A. DuVernois; R. W. Ellsworth

Author(s): Abeysekara, AU; Alfaro, R; Alvarez, C; Alvarez, JD; Arceo, R; Arteaga-Vela Zquez, JC; Solares, HAA; Barber, AS; Baughman, BM; Bautista-Elivar, N; Reyes, ADB; Belmont, E; Benzvi, SY; Bernal, A; Braun, J; Caballero-Mora, KS; Capistran, T; Carraminana, A; Casanova, S; Castillo, M; Cotti, U; Cotzomi, J; Leon, SCD; Fuente, EDL; Leon, CD; Deyoung, T; Diaz Hernandez, R; Dingus, BL; Duvernois, MA; Ellsworth, RW; Enriquez-Rivera, O; Fiorino, DW; Fraija, N; Garfias, F; Gonzalez, MM; Goodman, JA; Gussert, M; Hampel-Arias, Z; Harding, JP; Hernandez, S; Huntemeyer, P; Hui, CM; Imran, A; Iriarte, A; Karn, P; Kieda, D; Lara, A; Lauer, RJ; Lee, WH; Lennarz, D; Vargas, HL; Linnemann, JT; Longo, M; Raya, GL; Malone, K; Marinelli, A; Marinelli, SS; Martinez, H; Martinez, O; Martinez-Castro, J; Matthews, JA; Miranda-Romagnoli, P; Moreno, E; Mostafa, M; Nellen, L; Newbold, M; Noriega-Papaqui, R; Patricelli, B; Pelayo, R; Perez-Perez, EG; Pretz, J; Ren, Z; Riviere, C; Rosa-Gonzalez, D; Salazar, H; Greus, FS; Sandoval, A; Schneider, M; Sinnis, G; Smith, AJ; Woodle, KS; Springer, RW; Taboada, I; Tibolla, O; Tollefson, K | Abstract:


Astroparticle Physics | 2006

UHE neutrino damping in a thermal gas of relic neutrinos

J. C. D’Olivo; L. Nellen; S. Sahu; V. Van Elewyck

Abstract We present a calculation of the damping of an ultra-energetic cosmic neutrino (UHEν) travelling through the thermal gas of relic neutrinos, using the formalism of finite-temperature field theory. From the self-energy diagram due to Z exchange, we obtain the annihilation cross-section for an UHEν interacting with an antineutrino from the background. This method allows us to derive the full expression for the UHEν transmission probability, taking into account the momentum of relic neutrinos. We discuss the effect of thermal motion on the shape of the absorption dips for different UHEν fluxes as well as in the context of relic neutrino clustering. We find that for ratios of the neutrino mass to the relic background temperature 10 2 or smaller, the thermal broadening of the absorption lines could significantly affect the determination of the neutrino mass and of the characteristics of the population of UHEν sources.


The Astrophysical Journal | 2018

Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

A. Albert; R. Alfaro; C. Alvarez; J. D. Álvarez; R. Arceo; J.C. Arteaga-Velázquez; D. Avila Rojas; H. A. Ayala Solares; N. Bautista-Elivar; A. Becerril; E. Belmont-Moreno; S. BenZvi; A. Bernal; Jürgen Braun; C. Brisbois; K. S. Caballero-Mora; T. Capistrán; Alberto Carraminana; S. Casanova; M. Castillo; U. Cotti; J. Cotzomi; S. Coutiño de León; C. De León; E. de la Fuente; R. Diaz Hernandez; B. L. Dingus; M. A. DuVernois; J. C. Diaz-Velez; R. W. Ellsworth

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

Calibration and monitoring of water Cherenkov detectors with stopping and crossing muons

M. Alarcón; F. Alcaráz; J Barrera; E. Cantoral; J.C. D’Olivo; A. Fernández; M. Medina; L. Nellen; C Pacheco; S. Román; H. Salazar; J.F. Valdés-Galicia; M. Vargas; L. Villaseñor; A. Zepeda

Abstract The Auger Observatory water Cherenkov detectors (WCD) will require that the initial calibration and subsequent monitoring of each of the WCDs be done in a remote way. We present a method to perform these tasks based on the detection of muons decaying inside the detectors and the application of adequate selection cuts. This technique may be complemented with another based on muons crossing the WCDs. Samples of decaying and crossing muon events were obtained with a WCD prototype to demonstrate the viability of the techniques. Three clear peaks of PMT charge distributions were identified. All of them are useful for calibration and monitoring of WCDs: one for stopping muons, one for decay electrons and one for crossing muons. The mean value of the peak found in the decay-electron charge distribution is 0.18 times the corresponding value for vertically crossing muons; likewise, the mean value of the peak in the charge distribution of crossing muons (excluding corner clipping muons) is 6.1 times the value for decay electrons in a tank of our dimensions; finally, the mean value of the peak in the charge distribution of stopping muons is 0.55 times the value for decay electrons. The techniques described can be applied equally well to unsegmented or segmented Auger tanks as each of the three PMTs of an Auger WCD can be self-triggered independently. The experimental data are well reproduced by numerical simulations.

Collaboration


Dive into the L. Nellen's collaboration.

Top Co-Authors

Avatar

C. De León

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

E. de la Fuente

University of Guadalajara

View shared research outputs
Top Co-Authors

Avatar

J. Cotzomi

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

M. Castillo

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

R. Alfaro

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

H. A. Ayala Solares

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

S. BenZvi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.C. Arteaga-Velázquez

Universidad Michoacana de San Nicolás de Hidalgo

View shared research outputs
Top Co-Authors

Avatar

B. L. Dingus

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge