Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.P.H. van Beek is active.

Publication


Featured researches published by L.P.H. van Beek.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


Geomorphology | 1999

A view on some hydrological triggering systems in landslides

Th.W.J. van Asch; Jelle Buma; L.P.H. van Beek

Abstract In this paper different types of hydrological triggering systems for debris flows, shallow and deeper landslides are described. The generation of surface run-off and high peak discharges in first order alpine catchments is an important triggering mechanism for debris flows. Failure conditions in shallow landslides can occur when at a critical depth, which is determined by the cohesion of the soil and the slope angle, the moisture content in the soil becomes close to saturation, resulting in a considerable reduction of soil strength. Deeper landslides (5–20 m depth) are in most cases triggered by positive pore pressures on the slip plane induced by a rising ground water level. The assessment of meteorological threshold conditions for shallow landslides (1–2 m) needs more detailed meteorological information than for deeper landslides. In the analyses of the hydrological triggering systems of deeper landslides the presence of a permeable top layer and fissures has to be taken into consideration.


Water Resources Research | 2011

Global monthly water stress: 2. Water demand and severity of water stress

Yoshihide Wada; L.P.H. van Beek; Daniel Viviroli; Hans H. Dürr; Rolf Weingartner; Marc F. P. Bierkens

[1] This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contrasted against blue water availability, reflecting climatic variability over the period 1958–2001. Despite the use of the single benchmark year with monthly variations in water demand, simulated water stress agrees well with long‐term records of observed water shortage in temperate, (sub)tropical, and (semi)arid countries, indicating that on shorter (i.e., decadal) time scales, climatic variability is often the main determinant of water stress. With the monthly resolution the number of people experiencing water scarcity increases by more than 40% compared to conventional annual assessments that do not account for seasonality and interannual variability. The results show that blue water stress is often intense and frequent in densely populated regions (e.g., India, United States, Spain, and northeastern China). By this method, regions vulnerable to infrequent but detrimental water stress could be equally identified (e.g., southeastern United Kingdom and northwestern Russia). Citation: Wada, Y., L. P. H. van Beek, D. Viviroli, H. H. Durr, R. Weingartner, and M. F. P. Bierkens (2011), Global monthly water stress: 2. Water demand and severity of water stress, Water Resour. Res., 47, W07518, doi:10.1029/2010WR009792.


Climatic Change | 2012

Hydrological response to climate change in a glacierized catchment in the Himalayas

Walter W. Immerzeel; L.P.H. van Beek; Markus Konz; Arun B. Shrestha; Marc F. P. Bierkens

The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.


Environmental Research Letters | 2013

Assessing flood risk at the global scale: model setup, results, and sensitivity

Ph.J. Ward; Brenden Jongman; F. C. Sperna Weiland; A. F. Bouwman; L.P.H. van Beek; Marc F. P. Bierkens; W. Ligtvoet; Hessel C. Winsemius

Globally, economic losses from flooding exceeded


Natural Hazards | 2004

Regional Assessment of the Effects of Land-Use Change on Landslide Hazard By Means of Physically Based Modelling

L.P.H. van Beek; Th.W.J. van Asch

19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP (


Journal of Hydrometeorology | 2009

Seasonal Predictability of European Discharge: NAO and Hydrological Response Time

Marc F. P. Bierkens; L.P.H. van Beek

1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures.


Global Biogeochemical Cycles | 2010

Modeling regional to global CH4 emissions of boreal and arctic wetlands

A.M.R. Petrescu; L.P.H. van Beek; J. van Huissteden; Catherine Prigent; Torsten Sachs; Chiara A. R. Corradi; Frans-Jan Parmentier; A. J. Dolman

Physically based models are capable of evaluating the effects of environmental changes through adaptations in their parameters. For landslide hazard zonation, this gives them an edge over traditional, statistically based techniques that require large datasets and often lack the objectivity to achieve the same purpose. Therefore, physical models can be valuable tools for hazard assessment and planning purposes.The usefulness of the model prognosis depends largely on the ability of the physical model to mimic the landscape system. This implies that the model should be calibrated and validated and that the imposed changes do not lead to a radical departure from the present situation.Under the recognition of these constraints, a physically based model has been applied to a 1.5 km 2 catchment in the Alcoy region (SE Spain) to evaluate the effects of land use change on landslide activity. The model couples a transient, distributed hydrological model with a probabilistic assessment of the slope stability. Thus, it is able to assess the spatial and temporal activity of slope instability. For the present situation, validation demonstrates that the probability of failure returns a conservative estimate of the spatial frequency of landsliding. The model has subsequently been applied to two hypothetical land use change scenarios that extrapolate present and likely trends. For these scenarios, the model results indicate a marginal decrease in the spatial frequency of landsliding (aerial extent of instability). However, the decrease in the temporal activity (is total duration of instability over a given period) is substantial under the altered land use conditions. The forecasted change in landslide activity not only affects the relative weight of slope processes in the region. It also has implications for the perceived hazard levels and the landslide hazard zonation of the area. Copyright Kluwer Academic Publishers 2004


Slope stability and erosion control: Ecotechnological solutions | 2008

How vegetation reinforces soil on slopes

Alexia Stokes; Je Norris; L.P.H. van Beek; Thom Bogaard; Erik Cammeraat; Slobodan B. Mickovski; Anthony Jenner; Antonino Di Iorio; Thierry Fourcaud

Abstract In this paper the skill of seasonal prediction of river discharge and how this skill varies between the branches of European rivers across Europe is assessed. A prediction system of seasonal (winter and summer) discharge is evaluated using 1) predictions of the average North Atlantic Oscillation (NAO) index for the coming winter based on May SST anomalies of the North Atlantic; 2) a global-scale hydrological model; and 3) 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data. The skill of seasonal discharge predictions is investigated with a numerical experiment. Also Europe-wide patterns of predictive skill are related to the use of NAO-based seasonal weather prediction, the hydrological properties of the river basin, and a correct assessment of initial hydrological states. These patterns, which are also corroborated by observations, show that in many parts of Europe the skill of predicting winter discharge can, in theory, be quite large. However, this achieved skill...


Geophysical Research Letters | 2014

A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity

Tom Gleeson; Nils Moosdorf; Jens Hartmann; L.P.H. van Beek

Methane (CH4) emission from boreal, arctic and subarctic wetlands constitutes a potentially positive feedback to global climate warming. Many process-based models have been developed, but high uncertainties remain in estimating the amount of CH4 released from wetlands at the global scale. This study tries to improve estimates of CH4 emissions by up-scaling a wetland CH4 emission model, PEATLAND-VU, to the global scale with a spatial resolution of 0.5 degrees for the period 2001-2006. This up-scaling was based on the global circum-arctic distribution of wetlands with hydrological conditions being specified by a global hydrological model, PCR-GLOBWB. In addition to the daily hydrological output from PCR-GLOBWB, comprising water table depths and snow thickness, the parameterization included air temperature as obtained from the ECMWF Operational Archive. To establish the uncertainty in the representations of the circum-arctic distribution of wetlands on the CH4 emission, several existing products were used to aggregate the emissions. Using the description of potential peatlands from the FAO Digital Soil Map of the World and the representation of floodplains by PCR-GLOBWB, the average annual flux over the period 2001-2006 was estimated to be 78 Tg yr(-1). In comparison, the six-year average CH4 fluxes were 37.7, 89.4, 145.6, and 157.3 Tg yr(-1) for different estimates of wetland extends based on the studies by Matthews and Fung, Prigent et al., Lehner and Doll, and Kaplan, respectively. This study shows the feasibility to estimate interannual variations in CH4 emissions by coupling hydrological and CH4 emission process models. It highlights the importance of an adequate understanding of hydrology in quantifying the total emissions from northern hemispheric wetlands and shows how knowledge of the sub-grid variability in wetland extent helps to prescribe relevant hydrological conditions to the emission model as well as to identify the uncertainty associated with existing wetland distributions. (Less)

Collaboration


Dive into the L.P.H. van Beek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihide Wada

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thom Bogaard

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge