L. P. Khoroshun
National Academy of Sciences of Ukraine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. P. Khoroshun.
International Applied Mechanics | 2001
L. P. Khoroshun
The structural theory of microdamageability of a homogeneous material is generalized to the case of a thermal action. The theory is based on the stochastic thermoelastic equations of a medium with micropores, hollow or filled with particles of a damaged material. This medium models a material with dispersed microdamages. The Schleicher–Nadai fracture criterion is used as the condition of origin of a micropore in a microvolume of an undestroyed material. It is assumed that the particles of the damaged material in the micropores do not resist shear and triaxial tension and behave as the undamaged material under triaxial compression. The porosity balance equation is corrected for the thermal component and together with the relations between macrostresses, macrostrains, and temperature forms a closed system describing the concurrent action of deformation and microdamage. Nonlinear stress–strain diagrams and dependences of microdamage on macrostrain and temperature are constructed
International Applied Mechanics | 2002
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of granular composites is stated with allowance made for the thermal effect. Microdamages in the components are modeled by pores, hollow or filled with particles of the destroyed material that resist compression. The fracture criterion is assumed to have the Schleicher–Nadai form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function with a power or Weibull distribution. The stress–strain state and effective properties of the material are determined from the stochastic thermoelastic equations for granular composites with porous components. The equations of deformation and microdamage are closed by the equation of porosity balance corrected for the thermal effect. Nonlinear diagrams are plotted for the concurrent processes of deformation of a granular material and microdamage of the matrix as functions of macrostrains and temperature. The influence of the physical and geometrical parameters on the processes is analyzed.
International Applied Mechanics | 2002
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of laminated materials is stated with account taken of the thermal effect. Microdamages in the components are simulated by pores empty or filled with particles of damaged material that resist compression. The fracture criterion is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for laminated materials with porous components. The deformation and microdamage equations are closed by the equations of porosity balance corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a two-component laminated material and microdamage due to the thermal macrostrain of a component. The effect of physical and geometrical parameters on these processes is studied.
International Applied Mechanics | 2002
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of fibrous materials with transversely isotropic fibers is stated with account taken of the thermal effect. Microdamages in the isotropic matrix are simulated by pores empty or filled with particles of damaged material that resist compression. The fracture criterion for a microvolume of the matrix is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for fibrous materials with a porous matrix. The deformation and microdamage equations are closed by the equations of porosity balance corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a fibrous material and microdamage of the matrix due to the thermal macrostrain. The effect of physical and geometrical parameters on these processes is studied.
International Applied Mechanics | 2000
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of multicomponent laminated composites is outlined through the simulation of microdamages in the components by pores filled with compression-resisting particles of the destroyed material. The damage criterion for a microvolume of a component is taken in the Schleicher–Nadai form, which allows for the difference between the ultimate tensile and compressive loads. The ultimate strength is a random function of Weibull-distributed coordinates. The stress–strain state and the efficient properties of the material are determined from the stochastic equations of the elastic theory for a laminated composite with porous components. The equations of deformation and microdamage are closed by the equations of porosity balance in the components. Nonlinear diagrams of the concurrent processes of deformation in the laminated material and microdamage in the matrix are plotted. The effect of the physical and geometrical parameters on them is studied
International Applied Mechanics | 2002
L. P. Khoroshun; E. N. Shikula
A microdamage theory is constructed for laminated fibrous materials with transversely isotropic fibers and a porous isotropic matrix under thermal actions. Microdamages in the matrix are simulated by pores, empty or filled with particles of the damaged material that resist compression. The fracture criterion for a microvolume of the matrix is assumed to have the Nadai–Schleicher form, which takes into account the difference between the tensile and compressive ultimate loads, with the ultimate strength being a random function of coordinates with a power or Weibull distribution. The stress–strain state and the effective properties of the material are determined from the thermoelastic equations for laminated fibrous materials with a porous matrix. The deformation and microdamage equations are closed by the porosity balance equations corrected for the thermal effect. For various types of loading, nonlinear relations are derived for the coupled processes of deformation of a laminated fibrous material and microdamage of the matrix due to the thermal macrostrain. The effect of physical and geometrical parameters on these processes is studied.
International Applied Mechanics | 2000
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of granular composites is outlined through the simulation of microdamages in the components by pores filled with compression-resisting particles of a destroyed material. The damage criterion for a microvolume of a component is taken in the Schleicher–Nadai form, which allows for the difference between the ultimate tensile and compressive loads. The ultimate strength is a random function of Weibull-distributed coordinates. The stress–strain state and the efficient properties of the material are determined from the stochastic equations of elastic theory for a granular composite with porous components. The equations of deformation and microdamage are closed by the equations of porosity balance in the components. Nonlinear diagrams of the concurrent processes of deformation in the granular material and microdamage in the matrix are plotted. The effect of the physical and geometrical parameters on them is studied
International Applied Mechanics | 2004
L. P. Khoroshun; E. N. Shikula
The structural theory of short-term damage is generalized to the case where the undamaged components of a granular composite deform nonlinearly. The basis for this generalization is the stochastic elasticity equations for a granular composite with porous components whose skeletons deform nonlinearly. Microvolumes of the composite components meet the Huber–Mises failure criterion. Damaged microvolume balance equations are derived for the physically nonlinear materials of the components. Together with the equations relating macrostresses and macrostrains of a granular composite with porous nonlinear components, they constitute a closed-form system. The system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage–macrostrain relationship and plotting deformation diagrams are proposed. Uniaxial tension curves are plotted for the case where microdamages occur in the linearly hardened matrix and do not in the inclusions, which are linearly elastic
International Applied Mechanics | 2000
L. P. Khoroshun; E. N. Shikula
The theory of microdamageability of fibrous composites with transversally isotropic fibers and a microdamaged isotropic porous matrix is proposed. Microdamages in the matrix are simulated by pores filled with particles of the destroyed material that resist compression. The criterion of damage in the matrix microvolume is taken in the Schleicher–Nadai form. It accounts for the difference between the ultimate tensile and compressive loads. The ultimate strength is a random function of coordinates with Weibull distribution. The stress–strain state and effective properties of the material are determined from the stochastic equations of the elastic theory for a fibrous composite with porous components. The equations of deformation and microdamage are closed by the equations of porosity balance in the matrix. Nonlinear diagrams of the concurrent processes of deformation of fibrous materials and microdamage of the matrix are plotted. The effect of the physical and geometrical parameters on them is studied
International Applied Mechanics | 2001
L. P. Khoroshun; D. V. Babich
The problem on stability of plates with microdamages simulated by hollow randomly dispersed micropores is considered. Two approaches are proposed to investigate the stability of plates weakened by microdamages. These approaches are based on models well known from the theory of stability of elastoplastic bodies — the concepts of tangent-modulus loading and continuous loading