L. Rapetti
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Rapetti.
Livestock Production Science | 2004
G. Galassi; G.M. Crovetto; L. Rapetti; Alberto Tamburini
The aim of the experiment was to investigate the possible differences in the utilization of different fibrous feeds by the heavy fattening pig. Eight Landrace×Large White barrows of 85 kg BW were paired and fed, in a Latin Square design, four diets containing different dietary fibre sources: 8% coarse soft wheat bran (control, C), 24% milled wheat bran (MB), 24% coarse wheat bran (CB), and 16% dried beet pulp (BP). Compared to C, the MB and CB diets significantly decreased the digestibility of most parameters, while the BP diet lowered the digestibility of N and EE, increased fibre digestibility, and had similar DM, OM and energy digestibility. Compared to BP, diets MB and CB had significantly higher N and EE digestibility, but lower DM, OM, fibre and energy digestibility. CH4 emission was significantly increased by BP compared with C, MB and CB. Compared to C, metabolisable energy was significantly lowered by MB and CB, but not by the BP diet. The BP diet caused significantly (P<0.01) greater heat production (47.3% of intake energy) than the MB (45.2%) and CB (45.0%) diets; heat production for diet C was intermediate (46.4%). The retained energy and N retention were similar for all treatments. MB and BP diets had significantly lower NE than the other two diets. The results suggest that, because the heavy pig can use dietary fibre better than younger pigs, wheat bran and beet pulp have a higher energy content than reported from trials on animals of lower bodyweight.
Livestock Production Science | 1998
G.M. Crovetto; G. Galassi; L. Rapetti; Anna Sandrucci; Alberto Tamburini
Abstract An in vivo digestibility and calorimetric experiment was performed on eight adult wethers to determine the digestibility and net energy content of wheat silages obtained from whole plants cut at different stages of maturity. Wheat ( Triticum aestivum L., var. Eridano) was harvested at the boot (B), midbloom (MB), milk (M) and dough (D) stages of maturity. The wethers were fed ad libitum in a 4×4 latin square digestibility trial. Each collection period lasted eight days with 3×24 h-cycles of respiration trials (indirect calorimetry in respiration chambers). In vitro organic matter digestibility (IVOMD) was determined on dried samples of whole wheat cut from the same field at 10 different stages between boot and dough. Silage quality parameters were optimum for all stages. DM, OM and energy intake were significantly higher in the first and last stages of maturity (B and D) than in the medium stages (MB and M). DM, OM and energy digestibility decreased significantly from B to M stage but did not change between the last two stages. In contrast, CF, NDF and ADF digestibility decreased significantly with maturity. IVOMD had a quadratic trend of variation as a function of the stage of maturity, similar to the in vivo data, with the lower value at the M stage. Metabolizability ( q =ME/GE) followed the same trend of energy digestibility. NE l decreased with increasing stage of plant growth but the difference was significant only between the first stage and the last three stages. The nutritive values of the whole-crop wheat silages was very high for the B stage and decreased with successive stages of maturity (7.74, 6.41, 5.69 and 5.39 MJ NE l /kg DM at the B, MB, M and D stages). In contrast, DM yield was minimum at the B stage (3.3 t/ha) and increased with increasing maturity up to 9.6 t/ha at the D stage. As a consequence, a satisfactory compromise between yield and nutritive value would involve harvesting whole-crop wheat just before the milk stage.
Journal of Dairy Science | 2015
M. Pirondini; Stefania Colombini; Marcello Mele; Luca Malagutti; L. Rapetti; G. Galassi; G.M. Crovetto
The aim of this study was to evaluate the effects of diets with different starch concentrations and fish oil (FO) supplementation on lactation performance, in vivo total-tract nutrient digestibility, N balance, and methane (CH4) emissions in lactating dairy cows. The experiment was conducted as a 4×4 Latin square design with a 2×2 factorial arrangement: 2 concentrations of dietary starch [low vs. high: 23.7 and 27.7% on a dry matter (DM) basis; neutral detergent fiber/starch ratios: 1.47 and 1.12], the presence or absence of FO supplement (0.80% on a DM basis), and their interaction were evaluated. Four Italian Friesian cows were fed 1 of the following 4 diets in 4 consecutive 26-d periods: (1) low starch (LS), (2) low starch plus FO (LSO), (3) high starch (HS), and (4) high starch plus FO (HSO). The diets contained the same amount of forages (corn silage, alfalfa and meadow hays). The starch concentration was balanced using different proportions of corn meal and soybean hulls. The cows were housed in metabolic stalls inside open-circuit respiration chambers to allow measurement of CH4 emission and the collection of separate urine and feces. No differences among treatments were observed for DM intake. We observed a trend for FO to increase milk yield: 29.2 and 27.5kg/d, on average, for diets with and without FO, respectively. Milk fat was affected by the interaction between dietary starch and FO: milk fat decreased only in the HSO diet. Energy-corrected milk (ECM) was affected by the interaction between starch and FO, with a positive effect of FO on the LS diet. Fish oil supplementation decreased the n-6:n-3 ratio of milk polyunsaturated fatty acids. High-starch diets negatively influenced all digestibility parameters measured except starch, whereas FO improved neutral detergent fiber digestibility (41.9 vs. 46.1% for diets without and with FO, respectively, and ether extract digestibility (53.7 vs. 67.1% for diets without and with FO, respectively). We observed a trend for lower CH4 emission (g/d) and intensity (g/kg of milk) with the high-starch diets compared with the low-starch diets: 396 versus 415g/d on average, respectively, and 14.1 versus 14.9g/kg of milk, respectively. Methane intensity per kilogram of ECM was affected by the interaction between starch and FO, with a positive effect of FO for the LS diet: 14.5 versus 13.3g of CH4/kg of ECM for LS and LSO diets, respectively.
Journal of the Science of Food and Agriculture | 2014
Stefania Colombini; Glen A. Broderick; Incoronata Galasso; Tommaso Martinelli; L. Rapetti; Roberto Russo; Remo Reggiani
BACKGROUND Camelina sativa (CS) is an oilseed crop used for biofuel production. By-products from oil extraction are high in protein and can be used in ruminant rations; more information about their nutritive value is required also considering the antinutrional factor content of the by-products. The aim of this study was to evaluate the nutritive value of CS meal genotypes in comparison with canola. RESULTS Ten CS genotypes and one canola cultivar were evaluated. Meals were obtained from seeds after solvent oil extraction. CS average crude protein (CP) content (g kg⁻¹ dry matter) was 457. Numerical differences in lysine and sulfur amino acid content were observed among CS genotypes. Glucosinolate (mmol kg⁻¹) content was higher for CS (23.1) than canola (7.2). Sinapine content (g kg⁻¹) was lower for CS (2.79) than for canola (4.32). Differences were observed among CS genotypes for rumen undegraded protein (RUP). Average RUP (g kg⁻¹ CP) was 316 for CS and 275 for canola. CONCLUSIONS CS meal has potential for use in ruminant rations as a high-quality protein source. In vivo studies are needed to compare CS with other protein sources used in cattle rations. Implementation of breeding programs for improved meal quality is recommend.
Journal of Dairy Science | 2012
Stefania Colombini; G. Galassi; G.M. Crovetto; L. Rapetti
Total mixed rations containing corn (CS), whole plant grain sorghum (WPGS), or forage sorghum (FS) silages were fed to 6 primiparous Italian Friesian cows to determine the effects on lactation performance, nutrient digestibility, and N balance. Furthermore, the relationship between in vivo total-tract neutral detergent fiber (NDF) digestibility (ttNDFD) and the ttNDFD derived by the Cornell Net Carbohydrate and Protein System (CNCPS) model was assessed. Cows were assigned to 1 of 3 diets in a replicated 3 × 3 Latin square with 28-d periods. The experimental treatment was silage type and 3 different silages were included in the diets. The diets were formulated to be iso-NDF. Accordingly, each diet was formulated to contain 41.5% CS silage, 36.7% WPGS silage, or 28.0% FS silage, on a DM basis. Starch content was balanced by adding the appropriate amount of corn meal. Separate collection of total urine and feces was performed. Dietary forages were analyzed for in vitro NDF digestibility (6 and 24h of incubation) to predict fiber digestion rate with 2 NDF pools (digestible and indigestible). Rumen digestibility of the potentially digestible NDF pool was predicted using CNCPS version 6.1, using the in vitro forage fiber digestion rate. The ttNDFD was predicted assuming that intestinal digestibility of the NDF amount escaping rumen digestion was 20%, according to the CNCPS model. Dry matter intake was decreased by approximately 1.8 kg/d in cows fed the FS diet compared with the other diets, probably for the greater particle size of FS diet. Hence, milk yield (kg/d) was lowest for FS (23.6), intermediate for WPGS (24.6), and highest for the CS diet (25.4). Milk urea N (mg/dL) was highest for FS (12.9), intermediate for WPGS (11.9), and lowest for CS (10.7) diet. In vivo ttNDFD (%) was 51.4 (CS), 48.6 (WPGS), and 54.1 (FS); this was probably due to a higher retention time of FS diet in the rumen rather than to a better quality of the FS silage, as confirmed by in situ and in vitro results. Urinary N excretion (% N intake) was highest for FS (31.8), intermediate for WPGS (29.3), and lowest for the CS (27.5) diet. The predicted ttNDFD (37.7, 36.3, and 39.5% for CS, WPGS, and FS, respectively) were lower than the in vivo results. Providing an adequate starch supplementation, whole plant grain sorghum silage can replace corn silage in dairy cows TMR. Forage sorghum silage had rumen NDF digestibility comparable to the other silages; however, it had a negative effect on dry matter intake and milk production, probably due to an inadequate effect of processing.
Italian Journal of Animal Science | 2002
L. Rapetti; G. Matteo Crovetto; G. Galassi; Anna Sandrucci; Giuseppe Succi; Alberto Tamburini; G. Battelli
Abstract The efficiency of utilisation of diets with different proportions of energy sources (starch, fat, lactose) was studied with three pairs of lactating Saanen goats; the animals were fed, in a Latin square design, 3 silage-based diets containing (on DM basis) the following energy sources: 32% maize meal (diet M); 4.7% rumen-protected fat (Megalac®) and 23.5% maize meal (diet F); 9.8% milk whey permeate powder and 22.3% maize meal (diet W). During each of the three experimental periods, 8 days of total collection balance trials were conducted during which goats were allocated for 72 h (three 24 h cycles) in open circuit respiration chambers to determine methane and heat production and, hence, the energy balance. Diet F, in comparison with diets M and W, significantly increased the milk fat content (4.13 vs 3.11 and 3.14%, P<0.001) and the 4%-FCM yield (3367 vs 2927 and 3055 g/d, P<0.01 and P<0.05, respectively), while no relevant changes were observed for milk protein content and yield. Energy digestibility was equal in diets F and W. Megalac® did not decrease fibre digestibility. The partition of the gross energy intake (EI) differed significantly between diets: diet M had lower DE (72.4 vs 74.3 and 74.3%; P<0.01) and ME (62.1 vs 64.7 and 63.5%; P<0.05) in comparison with diets F and W, respectively. Energy lost as methane was not significantly decreased by the inclusion of rumenprotected fat in the diet, although a trend for a reduction of methanogenesis was observed. Heat production determined by treatment F was lower in comparison with the other treatments. This difference was almost significant (P=0.056) when expressed as a percentage of the ME. Milk energy output increased significantly (+12%, P<0.001) by including fat in the diet, as compared with treatments M and W: 21.4 vs 19.1 and 19.0% of the EI. The net energy content of the protected fat was 27.94 MJ NEl/kg DM (+340% vs maize meal); its kl value resulted 0.77. The corresponding values for whey permeate were 7.76 MJ NEl/kg DM (-5% vs maize meal) and 0.50, respectively. Summarizing, the efficiency of energy utilization in diet M was significantly lower in comparison with the other two diets in terms of digestibility and metabolisability, while its NEl content was similar to that of diet W. On the other hand, diet F had a significantly higher ME (P<0.01) and NEl (P<0.05) as compared to the other two diets. Diet F greatly influenced the fatty acid composition of the milk fat with less short (-30%) and medium (-33%) chain fatty acids and more (+18%) long chain fatty acids. In conclusion, whey permeate and even more Megalac® can be successfully used as feed ingredients in the diet of highly productive lactating goats, but the economical convenience of their utilisation must be evaluated based on the market values of feedstuffs.
Italian Journal of Animal Science | 2010
D. Colombo; G.M. Crovetto; Stefania Colombini; G. Galassi; L. Rapetti
Abstract Eight hybrids of sorghum forage were tested in large plots of two farms in two consecutive years to evaluate their chemical characteristics, nutritive value and yield as a possible substitute for maize silage. Two or three cuts were made depending on climatic conditions. On forage samples taken at ensiling chemical analyses and 24 h gas production were performed, to predict the NEl content. In comparison with maize silage, the sorghum hybrids registered higher protein (13.7% on DM) and NDF (62.6% on DM) contents. Interestingly, the fibre fraction had a low lignin content (3.1% on DM). NEl content ranged from 4.53 to 5.28 MJ/kg DM, the latter for the hybrid with the lowest NDF content. Hybrid effect was significant for ash, NDF, ADF and NEl contents, whilst cut effect was significant for EE, CP, NDF and ADF. Yield was strongly influenced by fertilisation; when the latter was applied, it was in the range of 10-18 t DM, 1.7-2.8 t CP and 47-88 thousand MJ NEl per hectare, as a sum of the 23 cuts. Sorghum forage seems to be a possible alternative to the fibrous maize silage fraction in diets of lactating cows, and an excellent forage for the rations of dry cows and heifers.
Journal of Animal Science | 2014
C. Zanfi; Stefania Colombini; Federico Mason; G. Galassi; L. Rapetti; Luca Malagutti; G.M. Crovetto; M. Spanghero
The aim was to evaluate 2 levels of dietary inclusion of chopped whole-ear corn silage (WECS) on energy and nutrient utilization, growth, and slaughter performances of heavy pigs. Two in vivo experiments were conducted to determine digestibility and metabolic utilization of WECS using 18 barrows weighing 118 ± 8 kg BW on average, metabolic cages and respiration chambers (Exp. 1), and the effect of WECS on the growth performance and carcass traits on 42 barrows from 90 to 170 kg BW (Exp. 2). In both experiments, pigs were fed 3 experimental diets: a control diet (CON) containing cereal meals, extracted soybean meal, and wheat bran (80%, 9%, and 8% of DM, respectively) and 2 diets containing 15% (15WECS) or 30% WECS (30WECS) on a DM basis in place of wheat bran and corn meal. The diets were prepared daily by mixing the WECS to a suitable compound feed. Feed intake was always restricted to allow a daily DMI of 7.2% BW(0.75) in Exp. 1 and from 8.0% to 6.5% BW(0.75) in Exp. 2. Diets had similar NDF contents (15.2% to 15.8% of DM), and WECS inclusion resulted in a slight reduction in CP content (from 14.0% to 13.6% of DM) and a considerable decrease in P content (from 0.47% to 0.30% of DM). Digestibility of OM, CP, and fat was similar among diets, whereas P digestibility was lower (P < 0.05) for the 30WECS diet (33.5%) in comparison with the CON and 15WECS diets (45.5% and 44.1%, respectively). Nitrogen lost in feces and urine and N retained were not different among diets, whereas P retained decreased with the increase of WECS (5.4, 3.7, and 2.2 g/d for the CON, 15WECS, and 30WECS diets, respectively; P < 0.05). No difference among diets was observed for energy balance. The WECS contained 13.48 MJ ME and 9.39 MJ NE/kg DM. In Exp. 2, feed intake was not depressed by WECS inclusion, and the ADG for the whole experiment was not different among dietary treatments (from 737 to 774 g/d). Fecal pH was lower (P < 0.05) for the WECS diets than the control diet (7.10 and 7.00 vs. 7.40) and for the sampling at 150 kg BW than that at 130 and 110 kg BW (6.96 vs. 7.29 and 7.24). At slaughter, lean percentage in the carcass was lower in the 30WECS diet than those of the other 2 diets (46.8% vs. 48.3% and 48.6%, P = 0.05). The overall experimental data obtained in both trials indicate that substitution of wheat bran and corn meal for WECS (up to 30% of DM) does not affect, with the exception of P utilization and carcass leanness, energy and nutrient utilization and performance of heavy pigs in the last phase of growing.
Italian Journal of Animal Science | 2005
L. Rapetti; Luciana Bava; Alberto Tamburini; G.M. Crovetto
Abstract Six lactating Saanen goats have been used in a Latin Square design to evaluate a grass-based diet (G), a hay-based diet (H) and a nonforage diet (NF). On dry matter, grass and hay contributed for 55% of the diets and had 13.7 and 16.1% CP, 55.4 and 49.4% NDF, 38.0 and 31.6% ADF, respectively. Diet NF had beet pulp, cracked carob beans and whole cottonseed as main ingredients, with more than 75% of the particles greater than 2 mm. Independently of the dietary treatment, the goats spent more time eating than ruminating. Diet NF proved to be effective in stimulating chewing activity, despite a trend for a lower chewing activity for eating (178, 185, 125 min/kg DMI for diets G, H and NF, respectively), but not for ruminating (84, 80, 80 min/kg DMI for diets G, H and NF, respectively). Feed intake did not differ among diets, while regarding digestibility diet NF had the highest values for DM (74.1%), OM (75.7%) and non-fibrous carbohydrates (92.0%), but the lowest for ADF (44.5%). For treatments G, H and NF milk yields were 3011, 3688 and 3212 g/d (P<0.05 between H and G), while milk fat and protein were respectively 3.37, 3.24, 2.96% (P<0.05 between G and NF) and 3.11, 3.32, 3.29%. Milk urea N was lower for diet NF (18.8, 18.6, 12.7 mg/100 ml, P<0.001). Diet NF increased the concentration of the short chain fatty acids of milk fat and decreased the content of C18:0, C18:1 and C18:3 in comparison to the other two diets. No difference among treatments was recorded for CLA. Intake energy was digested to a lesser extent for diet G (68.9, 70.0, 72.7%, P<0.05 between G and NF) due to its poor quality forage. Urinary energy losses reflected the corresponding protein contents of the diets, while no difference was recorded for methane production. ME resulted higher for diet NF (60.0, 60.7, 65.1% of the intake energy, P<0.01), while heat production and milk energy yield were similar in the three treatments. Diet NF had a higher ME content (11.13, 11.26, 11.93 MJ/kg DM, P<0.05), while no significant difference among the diets was recorded in terms of kl (0.64, 0.70, 0.69) and NEl (7.20, 7.93, 8.30 MJ/kg DM). It is concluded from the study that a nonforage diet with an adequate amount of structured fibre could substitute a ration based on poor quality forage in lactating goats; however, good forage seems to enhance milk performance to a greater extent.
PLOS ONE | 2015
Licia Scaccabarozzi; Livia Leoni; Annalisa Ballarini; Antonio Barberio; C. Locatelli; A. Casula; V. Bronzo; G. Pisoni; Olivier Jousson; Stefano Morandi; L. Rapetti; Aurora García-Fernández; P. Moroni
Following the identification of a case of severe clinical mastitis in a Saanen dairy goat (goat A), an average of 26 lactating goats in the herd was monitored over a period of 11 months. Milk microbiological analysis revealed the presence of Pseudomonas aeruginosa in 7 of the goats. Among these 7 does, only goat A showed clinical signs of mastitis. The 7 P. aeruginosa isolates from the goat milk and 26 P. aeruginosa isolates from environmental samples were clustered by RAPD-PCR and PFGE analyses in 3 genotypes (G1, G2, G3) and 4 clusters (A, B, C, D), respectively. PFGE clusters A and B correlated with the G1 genotype and included the 7 milk isolates. Although it was not possible to identify the infection source, these results strongly suggest a spreading of the infection from goat A. Clusters C and D overlapped with genotypes G2 and G3, respectively, and included only environmental isolates. The outcome of the antimicrobial susceptibility test performed on the isolates revealed 2 main patterns of multiple resistance to beta-lactam antibiotics and macrolides. Virulence related phenotypes were analyzed, such as swarming and swimming motility, production of biofilm and production of secreted virulence factors. The isolates had distinct phenotypic profiles, corresponding to genotypes G1, G2 and G3. Overall, correlation analysis showed a strong correlation between sampling source, RAPD genotype, PFGE clusters, and phenotypic clusters. The comparison of the levels of virulence related phenotypes did not indicate a higher pathogenic potential in the milk isolates as compared to the environmental isolates.