L. Raul Abramo
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Raul Abramo.
Physics Letters B | 2003
L. Raul Abramo; F. Finelli
We investigate tachyon dynamics with an inverse power-law potential V (φ)∝φ−α. We find global attractors of the dynamics leading to a dust behavior for α > 2 and to an accellerating universe for 0 <α≤ 2. We study linear cosmological perturbations and we show that metric fluctuations are constant on large scales in both cases. In the presence of an additional perfect fluid, the tachyon with this potential behaves as dust or dark energy.
Physics Letters B | 2009
Elcio Abdalla; L. Raul Abramo; Laerte Sodré; Bin Wang
Abstract We investigate the influence of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain the general Layser–Irvine equation in the presence of interactions, and find how, in that case, the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions on the magnitude and significance of this coupling could be established.
Physical Review D | 2010
Elcio Abdalla; L. Raul Abramo; José Cavalcante de Souza
We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.
Physical Review D | 2006
L. Raul Abramo; A. Bernui; I. S. Ferreira; Thyrso Villela; Carlos Alexandre Wuensche
We investigate the large scale anomalies in the angular distribution of the cosmic microwave background radiation as measured by WMAP using several tests. These tests, based on the multipole vector expansion, measure correlations between the phases of the multipoles as expressed by the directions of the multipole vectors and their associated normal planes. We have computed the probability distribution functions for 46 such tests, for the multipoles l=2-5. We confirm earlier findings that point to a high level of alignment between l=2 (quadrupole) and l=3 (octopole), but with our tests we do not find significant planarity in the octopole. In addition, we have found other possible anomalies in the alignment between the octopole and the l=4 (hexadecupole) components, as well as in the planarity of l=4 and l=5. We introduce the notion of a global anomaly statistic to estimate the relevance of the low-multipoles tests of non-Gaussianity. We show that, as a result of these tests, the CMB maps which are most widely used for cosmological analysis lie within the {approx}10% of randomly generated maps with lowest global anomaly statistics.
Physical Review D | 2004
L. Raul Abramo; F. Finelli; Thiago S. Pereira
We study the cosmic microwave background (CMB) anisotropies constraints on two Dark Energy models described by scalar fields with different Lagrangians, namely, a Klein-Gordon and a Born-Infeld field. The speed of sound of field fluctuations are different in these two theories, and therefore the predictions for CMB and structure formation are different. Employing the Wilkinson Microwave Anisotropy Probe data on CMB, we make a likelihood analysis on a grid of theoretical models. We constrain the parameters of the models and compute the probability distribution functions for the equation of state. We show that the effect of the different sound speeds affects the low multipoles of CMB anisotropies, but is at most marginal for the class of models studied here.
Advances in Astronomy | 2010
L. Raul Abramo; Thiago S. Pereira
We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced “cosmic variances” that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMB data when searching for large-scale “anomalies”.
Monthly Notices of the Royal Astronomical Society | 2013
L. Raul Abramo; Katie E. Leonard
Galaxy surveys that map multiple species of tracers of large-scale structure can improve the constraints on some cosmological parameters far beyond the limits imposed by a simplistic interpretation of cosmic variance. This enhancement derives from comparing the relative clustering between different tracers of large-scale structure. We present a simple but fully generic expression for the Fisher information matrix of surveys with any (discrete) number of tracers, and show that the enhancement of the constraints on bias-sensitive parameters are a straightforward consequence of this multi-tracer Fisher matrix. In fact, the relative clustering amplitudes between tracers are eigenvectors of this multi-tracer Fisher matrix. The diagonalized multi-tracer Fisher matrix clearly shows that while the effective volume is bounded by the physical volume of the survey, the relational information between species is unbounded. As an application, we study the expected enhancements in the constraints of realistic surveys that aim at mapping several different types of tracers of large-scale structure. The gain obtained by combining multiple tracers is highest at low redshifts, and in one particular scenario we analyzed, the enhancement can be as large as a factor of ~3 for the accuracy in the determination of the redshift distortion parameter, and a factor ~5 for the local non-Gaussianity parameter. Radial and angular distance determinations from the baryonic features in the power spectrum may also benefit from the multi-tracer approach.
Physical Review D | 2009
Thiago S. Pereira; L. Raul Abramo
Gaussianity and statistical isotropy of the Universe are modern cosmologys minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C{sub l}, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C{sub l}s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAPs 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7 and l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.
Monthly Notices of the Royal Astronomical Society | 2012
L. Raul Abramo
Starting from the Fisher matrix for counts in cells, we derive the full Fisher matrix for surveys of multiple tracers of large-scale structure. The key step is the ‘classical approximation’, which allows us to write the inverse of the covariance of the galaxy counts in terms of the naive matrix inverse of the covariance in a mixed position-space and Fourier-space basis. We then compute the Fisher matrix for the power spectrum in bins of the 3D wavenumber k, the Fisher matrix for functions of position x (or redshift z) such as the linear bias of the tracers and/or the growth function and the cross-terms of the Fisher matrix that expresses the correlations between estimations of the power spectrum and estimations of the bias. When the bias and growth function are fully specified, and the Fourier-space bins are large enough that the covariance between them can be neglected, the Fisher matrix for the power spectrum reduces to the widely used result that was first derived by Feldman, Kaiser & Peacock. Assuming isotropy, a fully analytical calculation of the Fisher matrix in the classical approximation can be performed in the case of a constant-density, volume-limited survey.
Journal of Cosmology and Astroparticle Physics | 2009
L. Raul Abramo; A. Bernui; Thiago S. Pereira
We search for planar deviations of statistical isotropy in the Wilkinson Microwave Anisotropy Probe (WMAP) data by applying a recently introduced angular-planar statistics both to full-sky and to masked temperature maps, including in our analysis the effect of the residual foreground contamination and systematics in the foreground removing process as sources of error. We confirm earlier findings that full-sky maps exhibit anomalies at the planar (l) and angular (l) scales (l,l) = (2,5),(4,7), and (6,8), which seem to be due to unremoved foregrounds since this features are present in the full-sky map but not in the masked maps. On the other hand, our test detects slightly anomalous results at the scales (l,l) = (10,8) and (2,9) in the masked maps but not in the full-sky one, indicating that the foreground cleaning procedure (used to generate the full-sky map) could not only be creating false anomalies but also hiding existing ones. We also find a significant trace of an anomaly in the full-sky map at the scale (l,l) = (10,5), which is still present when we consider galactic cuts of 18.3% and 28.4%. As regards the quadrupole (l = 2), we find a coherent over-modulation over the whole celestial sphere, for all full-sky and cut-sky maps. Overall, our results seem to indicate that current CMB maps derived from WMAP data do not show significant signs of anisotropies, as measured by our angular-planar estimator. However, we have detected a curious coherence of planar modulations at angular scales of the order of the galaxys plane, which may be an indication of residual contaminations in the full- and cut-sky maps.