L. Rolland
DSM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Rolland.
Astronomy and Astrophysics | 2011
P. Eger; G. Rowell; Akiko Kawamura; Yasuo Fukui; L. Rolland; C. Stegmann
Aims. To explore the nature of the unidentified very-high-energy (VHE, E > 100 GeV) gamma-ray source HESS J1626−490, we investigated the region in X-ray, sub-millimeter, and infrared energy bands. Methods. So far only detected with the HESS array of imaging atmospheric Cherenkov telescopes, HESS J1626−490 could not be unambiguously identified with any source seen at lower energies. Therefore, we analyzed data from an archival XMM-Newton observation, pointed towards HESS J1626−490, to classify detected X-ray point sources according to their spectral properties and their near-infrared counterparts from the 2MASS catalog. Furthermore, we characterized in detail the diffuse X-ray emission from a region compatible with the extended VHE signal. To characterize the interstellar medium surrounding HESS J1626−490 we analyzed 12 CO(J = 1−0) molecular line data from the Nanten Galactic plane survey, H i data from the Southern Galactic Plane Survey (SGPS) and Spitzer data from the GLIMPSE and MIPSGAL surveys. Results. None of the detected X-ray point sources fulfills the energy requirements to be considered as the synchrotron radiation counterpart to the VHE source assuming an inverse-Compton (IC) emission scenario. We did not detect any diffuse X-ray excess emission originating in the region around HESS J1626−490 above the Galactic background and the derived upper limit for the total X-ray flux disfavors a purely leptonic emission scenario for HESS J1626−490. We found a good morphological match between molecular and atomic gas in the −27 km s −1 to −18 km s −1 line-of-sight velocity range and HESS J1626−490. The cloud has a mass