L. S. Cavalcante
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. S. Cavalcante.
Journal of Colloid and Interface Science | 2009
J. C. Sczancoski; L. S. Cavalcante; M. R. Joya; J. W. M. Espinosa; P. S. Pizani; José Arana Varela; Elson Longo
SrWO(4) powders were synthesized by the co-precipitation method and processed in a microwave-hydrothermal (MH) at 140 degrees C for different times. The obtained powders were analyzed by X-ray diffraction (XRD), micro-Raman (MR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, field-emission gun scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns and MR spectra showed that the SrWO(4) powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a high absorption band situated at 831.57 cm(-1), which was ascribed to the WO antisymmetric stretching vibrations into the [WO(4)] tetrahedron groups. FEG-SEM micrographs suggested that the processing time is able to influence in the growth process and morphology of SrWO(4) powders. UV-vis absorption spectra revealed different optical band gap values for these powders. A green PL emission at room temperature was verified in SrWO(4) powders when excited with 488 nm wavelength.
Inorganic Chemistry | 2012
L. S. Cavalcante; Marcio Aurélio Pinheiro Almeida; Waldir Avansi; R. L. Tranquilin; Elson Longo; N. C. Batista; Valmor R. Mastelaro; M. Siu Li
In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (α-Ag(2)WO(4)) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these α-Ag(2)WO(4) microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that α-Ag(2)WO(4) microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L(3)-edge showed distorted octahedral [WO(6)] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the α-Ag(2)WO(4) microcrystals grow by aggregation and the Ostwald ripening process. PL properties of α-Ag(2)WO(4) microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like α-Ag(2)WO(4) microcrystals prepared by the SC method exhibited a major PL emission intensity relative to α-Ag(2)WO(4) microcrystals prepared by the CP and CH methods.
Journal of Applied Physics | 2008
L. S. Cavalcante; Valeria M. Longo; M. Zampieri; J. W. M. Espinosa; P. S. Pizani; Julio Ricardo Sambrano; José Arana Varela; Elson Longo; M. L. Simoes; C. A. Paskocimas
Very intense visible green photoluminescence (PL) was observed at room temperature in structurally ordered-disordered BaZrO3 powders. Ab initio calculations, ultraviolet-visible absorption spectroscopy, electron paramagnetic resonance, and PL were performed. Theoretical and experimental results showed that local defects in the cubic structure caused by [ZrO5⋅VOz] complex clusters, where VOz=VOx, VO•, and VO••, play an important role in the formation of hole-electron pairs, giving rise to a charge gradient in the structure which is responsible for PL emission.
Journal of Physics D | 2009
T. Badapanda; S. K. Rout; L. S. Cavalcante; J. C. Sczancoski; S. Panigrahi; Elson Longo; M. Siu Li
In this work, Ba(Zr0.25Ti0.75)O3 ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie–Weiss law. The optical properties were analysed by ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV–vis spectrum indicated that the Ba(Zr0.25Ti0.75)O3 ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO6] distorted clusters into a globally cubic matrix. (Some figures in this article are in colour only in the electronic version)
Nanoscale Research Letters | 2009
Sayonara A. Eliziário; L. S. Cavalcante; J. C. Sczancoski; P. S. Pizani; José Arana Varela; J. W. M. Espinosa; Elson Longo
In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission).In this letter, we report on the obtention of hafnium oxide (HfO2) nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD), field-emission gum scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDXS), ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence (PL) measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission).
CrystEngComm | 2015
Rosana F. Gonçalves; L. S. Cavalcante; Içamira C. Nogueira; Elson Longo; M.J. Godinho; J. C. Sczancoski; Valmor R. Mastelaro; Ivo M. Pinatti; Ieda L. V. Rosa; A. P. A. Marques
CaWO4:Eu3+ microcrystals (with 0, 1, 2 and 4 mol% Eu3+) were synthesized by a co-precipitation (CP) method and grown in a microwave-assisted hydrothermal (MAH) system at 130 °C for 30 min. X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near edge spectroscopy (XANES), Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopy indicated that all of the microcrystals have a scheelite-type tetragonal structure without deleterious phases. Structural refinement data were employed to model the [CaO8], [EuO8] and [WO4] clusters. XANES spectra confirmed that the presence of deltahedral [EuO8] clusters promotes small distortions of neighbouring tetrahedral [WO4] clusters in a global tetragonal lattice. Field emission scanning electron microcopy (FE-SEM) images revealed that the replacement of Ca2+ by Eu3+ ions changed the particles shapes, resulting in the different morphologies of the microcrystals. UV-vis diffuse reflectance spectra indicated a reduction in the optical band gap with the replacement of Ca2+ by Eu3+ ions. The photoluminescence (PL) properties of the Eu3+ ions in CaWO4 were studied as well as the chromaticity coordinates and lifetimes of these compounds.
RSC Advances | 2017
Edgar Alves Araújo Júnior; Francisco Xavier Nobre; Giancarlo da Silva Sousa; L. S. Cavalcante; Maria Rita de Morais Chaves Santos; Flavio L. Souza; José Milton Elias de Matos
In the present study, typical ZnO microcrystals exhibiting the wurtzite hexagonal crystal structure were produced successfully, characterized by a high degree of crystallinity, via hydrothermal processing at 120, 150 and 180 °C, assisted by N-cetyl-N,N,N-trimethylammonium (CTAB). The samples were characterised by XRD, Raman and infrared, FE-SEM, UV-Vis by diffuse reflectance and photoluminescence (PL). The experimental results confirm that all hydrothermally synthesised ZnO samples were crystallised into a wurtzite hexagonal structure. The ZnO crystals exhibit the morphology of hexagonal columns in the absence and double hexagonal columns in the presence of CTAB. The length and average diameter of the microstructures decrease with increasing processing temperature. It is evident that all the synthesised samples present very similar profiles and band positions in the PL emission spectra, with an emission band in the violet range at approximately 400 nm, a small peak in the UV range at approximately 380 nm, and highly superposed and intense emission bands between 440 and 750 nm (blue to red emission), with a maximum at approximately 610 nm. Furthermore, a nucleation and growth model was proposed to explain the formation of ZnO microcrystals, based on the experimental conditions, that were preferably grown in the [001] direction. In addition, the ZnO exhibited excellent performance in the photocatalytic degradation of rhodamine B (RhB) and methyl orange (MO), achieving 97% and 99% photodegradation of RhB and MO, respectively, when ZnO obtained at 120 °C, in the absence of CTAB, was used as catalyst.
Materials Science Forum | 2016
Giancarlo da Silva Sousa; L. S. Cavalcante; Maria Rita de Morais Chaves Santos; José Milton Elias de Matos
Nanocrystalline zirconium oxide (ZrO2) was synhesized by hydrothermal method in presence of hydrogen peroxide. Surface morphology analysis depicts the formation of the nanorods. The structural analysis confirms that the as-synthesized ZrO2 product is of pure monoclinic phase (m-ZrO2) with crystallite size of about ~8 nm. The product consists of monodispersed nanoparticles of uniform composition, high purity, and crystallinity. The Raman spectra are quantitatively analyzed and the observed peaks are attributed to various vibration modes of the m-ZrO2. Photoluminescence (PL) spectrum of ZrO2 nanostructure showed a strong and broad emission peak at around 534 nm, which can be attributed the participation of several energy levels.
Crystal Growth & Design | 2010
V. S. Marques; L. S. Cavalcante; J. C. Sczancoski; A. F. P. Alcantara; Marcelo Ornaghi Orlandi; Eduardo de Moraes; Elson Longo; José Arana Varela; M. Siu Li; M. R. M. C. Santos
Journal of Alloys and Compounds | 2008
Diogo P. Volanti; D. Keyson; L. S. Cavalcante; A. Z. Simoes; M. R. Joya; Elson Longo; José Arana Varela; P. S. Pizani; A. G. Souza