L.S. van Overbeek
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L.S. van Overbeek.
Molecular Plant-microbe Interactions | 2012
Angela Sessitsch; Pablo R. Hardoim; J. Döring; Alexandra Weilharter; Andrea Krause; T. Woyke; Birgit Mitter; Lena Hauberg-Lotte; F. Friedrich; M. Rahalkar; Thomas Hurek; Abhijit Sarkar; Levente Bodrossy; L.S. van Overbeek; D. Brar; J. D. van Elsas; Barbara Reinhold-Hurek
Roots are the primary site of interaction between plants and microorganisms. To meet food demands in changing climates, improved yields and stress resistance are increasingly important, stimulating efforts to identify factors that affect plant productivity. The role of bacterial endophytes that reside inside plants remains largely unexplored, because analysis of their specific functions is impeded by difficulties in cultivating most prokaryotes. Here, we present the first metagenomic approach to analyze an endophytic bacterial community resident inside roots of rice, one of the most important staple foods. Metagenome sequences were obtained from endophyte cells extracted from roots of field-grown plants. Putative functions were deduced from protein domains or similarity analyses of protein-encoding gene fragments, and allowed insights into the capacities of endophyte cells. This allowed us to predict traits and metabolic processes important for the endophytic lifestyle, suggesting that the endorhizosphere is an exclusive microhabitat requiring numerous adaptations. Prominent features included flagella, plant-polymer-degrading enzymes, protein secretion systems, iron acquisition and storage, quorum sensing, and detoxification of reactive oxygen species. Surprisingly, endophytes might be involved in the entire nitrogen cycle, as protein domains involved in N(2)-fixation, denitrification, and nitrification were detected and selected genes expressed. Our data suggest a high potential of the endophyte community for plant-growth promotion, improvement of plant stress resistance, biocontrol against pathogens, and bioremediation, regardless of their culturability.
Microbial Ecology | 2001
Paolina Garbeva; L.S. van Overbeek; J. W. L. van Vuurde; J. D. van Elsas
The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desirée) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable endophytic bacterial communities detected in potato stem bases as well as in roots were in most cases on the order 103 to 105 CFU g−1 of fresh plant tissue. Dilution plating revealed that a range of bacterial types dominated these populations. Dominant isolates fell into the α and γ subgroups of the Proteobacteria, as well as in the Flavobacterium/Cytophaga group. Different representatives of the Firmicutes were also found. The most frequently isolated strains (>5% of the total) were characterized as different Pseudomonas spp. (including P. aureofaciens, P. corrugata, and P. putida), Agrobacterium radiobacter, Stenotrophomonas maltophilia, and Flavobacterium resinovorans, using fatty acid methyl ester (FAME) analysis and/or sequencing of their partial 16S ribosomal RNA genes. Other Proteobacteria or Firmicutes were also found, albeit infrequently, and mainly in potato stem tissue. The fate of three putative potato endophytes, Stenotrophomonas maltophilia, Bacillus sp., and Sphingomonas paucimobilis, was monitored following their release into potato plants via injection, via root dipping, or via the soil. Following stem injection, the S. maltophilia and Bacillus inoculants could be tracked over time periods of, respectively, 22 and 1 day(s) by dilution plating as well as via PCR-DGGE. However, only S. maltophilia was able to colonize, and persist in, plant tissue from soil or dipped roots. S. paucimobilis was never recovered from the plant irrespective of the mode of introduction. The diversity of the indigenous bacterial flora associated with potato was then monitored via PCR-DGGE. The patterns obtained revealed the existence of bacterial communities of limited complexity, with communities from potato stems typically differing from those from stem peel and roots. Evidence was obtained for the endophytic occurrence of a range of organisms falling into the α, β, and γ subgroups of the Proteobacteria as well as in the Firmicutes. Several of the sequences found matched those from isolates, suggesting that the molecular evidence reported culturable organisms. However, a number of sequences did not have matching sequences from isolates, suggesting that non-culturable or as-yet-uncultured endophytic organisms were being detected.
Applied and Environmental Microbiology | 2009
Alexander V. Semenov; L.S. van Overbeek; A.H.C. van Bruggen
ABSTRACT The effect of cattle manure and slurry application on percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was investigated for different soil depths after the addition of water. Four treatments were chosen for the first set of experiments: (i) addition of inoculated farmyard manure on the soil surface, (ii) mixing of inoculated farmyard manure with the top 10 cm of soil, (iii) addition of inoculated slurry on the soil surface, and (iv) injection of inoculated slurry into the top 10 cm of the soil. Homogeneity of water distribution in the soil profile was confirmed by a nondestructive nuclear magnetic resonance method. Survival data were fitted to a modified logistic model, and estimated survival times were compared. In the second set of experiments, pathogen-inoculated farmyard manure or slurry was applied to soil columns with 1-month-old lettuce plants. More pathogen cells percolated to greater depths after slurry than after manure application. Survival of E. coli O157:H7 was significantly longer in soil with slurry than in that with manure, while survival of Salmonella serovar Typhimurium was equally high with manure and slurry. The densities of the pathogens were not different in the rhizosphere compared to the bulk soil with manure, while the densities were higher by 0.88 ± 0.11 and 0.71 ± 0.23 log CFU per g (dry weight), respectively, in the rhizosphere than in bulk soil after slurry application. Our results suggest that surface application of manure may decrease the risk of contamination of groundwater and lettuce roots compared to injection of slurry.
Biology and Fertility of Soils | 1992
J. D. van Elsas; J. T. Trevors; D. Jain; A.C. Wolters; C.E. Heijnen; L.S. van Overbeek
SummaryThe survival of Pseudomonas fluorescens cells encapsulated in alginate beads and colonization of wheat roots was studied in soil microcosms inoculated with the cells in alginate beads of varying composition. Cells encapsulated in beads and introduced into a non-sterile loamy sand survived better than cells added directly to the same soil. A recovery/growth step for the bead-encapsulated cells was added before they were introduced into the soil, in an attempt to obtain optimal population levels in the soil. Further, bacterial populations that grew to the highest density in the beads subsequently showed the highest survival levels in soil. The addition of 3% skim milk, or 3% skim milk and 3% bentonite clay to all bead types consistently resulted in the highest survival of the encapsulated cells in soil. Root colonization by P. fluorescens was generally not impaired by the encapsulation in alginate. One week after inoculation into the soil, encapsulated cells in the various bead types were able to colonize the wheat rhizoplane at high population levels, similar to or exceeding those found when free cells were inoculated. In a second root colonization experiment the wheat rhizoplane was also efficiently colonized 7 weeks after the inoculant cells had been introduced into the soil in different bead types. In both assays, the cells encapsulated in beads amended with skim milk plus bentonite clay showed the highest root colonization rates. It is clear, therefore, that alginate-mediated establishment of inoculants can improve inoculant effectiveness.
Archive | 1993
J.D. van Elsas; L.S. van Overbeek
Bacteria in the environment are subjected to many different stress factors such as nutrient, oxygen, or water limitations, temperature and pH extremes, UV irradiation, etc., which affect their physiological states. In particular, nutrient limitation and fluctuating nutrient availability are major stress factors in an environment such as soil. Hence, bacterial cells in soil may experience long periods of nongrowth next to sparse periods of growth. In fact, nongrowth may be the rule rather than the exception for cells in soil (Matin et al., 1989).
Biology and Fertility of Soils | 1991
J. D. van Elsas; J. T. Trevors; L.S. van Overbeek
SummaryVertical translocation of the introduced transposon Tn5-tagged Pseudomonas fluorescens cells was studies after irrigation of 50-cm long soil columns of loamy sand. The soil in the columns was slowly brought to saturation using groundwater, and enough water was then slowly added to permit collection of the percolated water. Introduced bacteria were transported to lower soil layers to a significantly higher degree in undisturbed soil cores than in repacked cores; water transport was hampered in both core types due to high soil bulk densities. Soil bulk density affected the degree of transport of the introduced cells; progressively more cells were translocated to deeper soil layers and into the percolation water at decreasing soil bulk densities. Repeated percolation of soil at a bulk density of 1.25 caused an increase in Tn5-tagged cell numbers in the lower soil layers and in the percolated water. Further, cells initially introduced into a dry (5.3% moisture) soil were translocated to a lesser extent than cells introduced into a wetter (13% moisture) soil. Finally, wheat roots enhanced the water-induced transport of introduced cells to the 40- and 50-cm deep soil layers and into the effluent, but not to the remaining soil layers. Large soil columns such as those used in the present study are useful in assessing the transport and survival of introduced bacterial cells in soils under a variety of simulated environmental conditions.
FEMS Microbiology Ecology | 2003
J. Schönfeld; Antonio Gelsomino; L.S. van Overbeek; A. Gorissen; Kornelia Smalla; J. D. van Elsas
Abstract The effects of compost addition and simulated solarisation of soil on the survival of Ralstonia solanacearum biovar 2 strain 1609, as well as on the structure of indigenous soil bacterial communities, were analysed. In addition, effects on the invasion of susceptible test plants by strain 1609 were assessed. In untreated soil in microcosms and the field, strain 1609 showed slow progressive declines, from 10(6)-10(7) to roughly 10(4)-10(5) CFU per g dry soil in around 60 days. When these soils were used in suppressiveness tests, a majority of plants developed symptoms of wilting and revealed the presence of the pathogen in their lower stem parts, as evidenced by immunofluorescence colony staining (IFC) and polymerase chain reaction (PCR). Solarisation of unamended soil did not drastically affect R. solanacearum survival or plant invasiveness. However, the addition of household compost resulted in enhanced R. solanacearum population decline rates, as well as reduced numbers of diseased plants in suppressiveness tests. Combined solarisation and compost addition yielded differential results between microcosms and the field. Some healthy-looking plants, primarily from soils treated with compost, revealed the latent presence of strain 1609 in the lower stem parts. The eubacterial and beta-subgroup proteobacterial communities in the differentially treated soil microcosms were rather stable, as evidenced by analysis of PCR-denaturing gradient gel electrophoresis (DGGE) generated molecular profiles. However, compost amendment clearly induced changes in these communities, which were detectable until the end of the experiment; two major bands, affiliated with Variovorax paradoxus and Aquaspirillum psychrophylum, were associated with the compost amendment. The decrease in abundance of R. solanacearum in the compost-amended soils was confirmed by the DGGE profiles.
Phytopathology | 2004
L.S. van Overbeek; J.H.W. Bergervoet; Frans Jacobs; J. D. van Elsas
ABSTRACT The physiology and virulence of Ralstonia solanacearum biovar 2 strain 1609, kept in water at 4 and 20 degrees C, were studied. At 20 degrees C, total cell and plate count (colony forming units; CFU) numbers were similar, between log 5.03 and log 5.55 CFU, and log 5.03 and log 5.51 cells per ml, at days 0 and 132, respectively. However, CFU in the cultures kept at 4 degrees C dropped from log 6.78 CFU/ml at day 0 to below detection after 84 days. The presence of catalase in the agar resulted in higher CFU, and at day 84, log 1.95 CFU/ml still was detectable. No colonies were observed at day 125. The presence of viable-but-nonculturable (VBNC) cells in the 4 degrees C cultures was confirmed using SYTO9 viability staining. Viable cell numbers were log 1.77 higher than CFU on plates with catalase. At day 84 and after 125 days, log 3.70 viable cells per ml still were present. Shifts in subpopulations differing in viability were found by flow cytometric sorting of 4 degrees C-treated cells stained with SYTO9 (healthy) and propidium iodide (PI; compromised). The SYTO9-stained cell fractions dropped from 99 to 39%, and the PI-stained fractions increased from 0.7 to 33.3% between days 0 and 125. At 20 degrees C, the SYTO9-stained fraction remained stable at 99% until day 132. SYTO9-stained cells sorted from 4 degrees C cultures at day 100 were injected into tomato plants. Upon incubation for 30 days, these plants did not show wilting. However, more than log 4.19 CFU and log 8.17 cells were recovered from these plants. Cells from colonies isolated from the nonwilted plants did not regain their virulence as demonstrated by subsequent injection into several new sets of tomato plants. Cells from 4 degrees C cultures injected at day 125 were not able to cause wilting of, or proliferate in, tomato plants. The threat posed by VBNC R. solanacearum cells upon incubation at 4 degrees C was thus ephemeral because cells lost their capacity to cause disease after 125 days.
Plant and Soil | 1991
J. D. van Elsas; L.S. van Overbeek; R. Fouchier
AbstractA specific eucaryotic DNA marker from Solanum tuberosum cv Bintje (688 bp patatin cDNA fragment) was cloned into the unique HindIII-site of plasmid RP4. RP4:: pat was transferred from Escherichia coli to Pseudomonas fluorescens R2f by filter mating.Homology to pat was not detected in the microbial population of Ede loamy sand soil, nor in that of the rhizosphere of wheat growing in this soil, as evidenced by colony filter hybridization. More sensitive molecular detection techniques like most-probable-number recovery/hybridization analysis, and analysis of total community DNA from soil by polymerase chain reaction (PCR) amplification did not reveal the presence of the pat sequence either. P. fluorescens R2f (RP4:: pat), introduced into sterile soil extract microcosms, initially showed poor survival and plasmid loss, after which the introduced populations grew and stabilized at a level of about Log10 7 cfu per mL. Between 25 and 50% of the population maintained the plasmid, as evidenced by filter hybridization of colonies from non-selective agar plates using the pat fragment as probe.Introduced R2f (RP4:: pat) could be recovered from soil microcosms using selective plating followed by colony hybridization and MPN recovery/hybridization with the pat probe. The presence of the pat marker always coincided with the presence of the resistance genes on RP4:: pat, indicating pat was an adequate marker of the presence of this plasmid. In addition, it adequately described the population dynamics of the introduced strain in soil, since no loss of the plasmid occurred.Hybridization to pat was also useful to show transfer of plasmid RP4:: pat to a recipient strain in soil; transfer to indigenous bacteria was not detected.Analysis by slot-blot hybridization of total community DNA extracted from inoculated soils indicated about Log10 6 cfu per g of dry soil were still detectable. Application of the PCR on this DNA indicated pat was detectable at least at a level of Log10 4 immunofluorescence-detectable cells per g of dry soil. Thus extraction of total community DNA followed by PCR permitted the detection of genetically engineered microorganisms present in soil as non-culturable cells.
Journal of Microbiological Methods | 2008
J. D. van Elsas; A. J. Speksnijder; L.S. van Overbeek
The microbiota of, in particular, disease-suppressive soils contains a wealth of antibiotic biosynthetic loci that are inaccessible by traditional cultivation-based techniques. Hence, we developed a methodology based on soil microbial DNA, which allowed the metagenomics-based unlocking of the relevant genes. Here, a streamlined soil metagenomics protocol is presented. The protocol consists of an optimized method to extract bacterial cells from a Rhizoctonia solani AG3 suppressive loamy sand soil followed by DNA extraction and purification, and the preparation of a clone library in an efficient host/vector system. Methods for the functional and genetic screening of the library for antibiotic production loci are also described. Using the suppressive soil, we thus produced, screened and tested an approximate 15,000-membered metagenomic library of fosmids in an Escherichia coli host. Functional screens, based on dual culturing of clone arrays with R. solani AG3 and Bacillus subtilis 168, were largely negative. Genetic screens, based on hybridizations with soil-generated probes for polyketide biosynthesis, non-ribosomal protein synthesis and gacA, revealed several inserts, of around 40-kb in size, with potential antibiotic production capacity. We present the full sequences of three selected clones. We further examine the challenges that still impinge on the metagenomic exploration of disease-suppressive soil.