Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Serra is active.

Publication


Featured researches published by L. Serra.


Journal of Instrumentation | 2012

NEXT-100 Technical Design Report (TDR): Executive Summary

V. Álvarez; F.I.G.M. Borges; S. Cárcel; J. M. Carmona; J. Castel; J M Catalá; S. Cebrián; A Cervera; D Chan; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R Esteve; P Evtoukhovitch; L.M.P. Fernandes; P Ferrario; A. L. Ferreira; E. Ferrer-Ribas; E.D.C. Freitas; V.M. Gehman; A. Gil; I. Giomataris; A. Goldschmidt; Haley Louise Gomez; J.J. Gómez-Cadenas; K González; D González-Díaz; R.M. Gutiérrez

In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ββ0ν) in 136XE at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8xa0×xa08) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.


Journal of High Energy Physics | 2015

First proof of topological signature in high pressure xenon gas with electroluminescence amplification

P. Ferrario; D. Lorca; J.J. Gómez-Cadenas; G. Martínez-Lema; A. Martínez; J.F. Toledo; V. Álvarez; R. Esteve; S. Cebrián; A. Para; A. Cervera; F.P. Santos; E.D.C. Freitas; C.A.N. Conde; A. Laing; L. Ripoll; J. T. White; S. Cárcel; V.M. Gehman; P. Novella; A. L. Ferreira; P. Lebrun; F.J. Mora; F. Monrabal; A. Simón; A. Goldschmidt; N. López-March; D. Shuman; I.G. Irastorza; M. Querol

A bstractThe NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype.Single electrons resulting from the interactions of 22Na 1275 keV gammas and electronpositron pairs produced by conversions of gammas from the 228Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1.% for signal events.n


Advances in High Energy Physics | 2014

Present Status and Future Perspectives of the NEXT Experiment

J. J. Gómez Cadenas; V. Álvarez; F.I.G.M. Borges; S. Cárcel; J. Castel; S. Cebrián; A. Cervera; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R. Esteve; P. Evtoukhovitch; L.M.P. Fernandes; P. Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; D. González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; F. J. Iguaz; I. G. Irastorza; M A Jinete

NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100u2009kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.


Journal of Instrumentation | 2013

Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

V. Álvarez; F.I.G.M. Borges; S. Cárcel; J. Castel; S. Cebrián; A Cervera; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R Esteve; P Evtoukhovitch; L.M.P. Fernandes; P. Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; J.J. Gómez-Cadenas; D González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; F. J. Iguaz; I. G. Irastorza; M A Jinete

This work was supported by the following agencies and institutions: the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP) and FPA2009-13697-C04-04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008. J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752.


Journal of Instrumentation | 2013

Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

V. Álvarez; F.I.G.M. Borges; S. Cárcel; J. Castel; S. Cebrián; A Cervera; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R Esteve; P Evtoukhovitch; L.M.P. Fernandes; P Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; J.J. Gómez-Cadenas; D González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; F. J. Iguaz; I.G. Irastorza; M A Jinete

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ``blob regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Qββ).


Journal of High Energy Physics | 2016

Sensitivity of NEXT-100 to neutrinoless double beta decay

J. Martín-Albo; D. Lorca; J.J. Gómez-Cadenas; G. Martínez-Lema; A. Martínez; J.F. Toledo; V. Álvarez; T. Stiegler; R. Esteve; S. Cebrián; A. Para; A Cervera; F.P. Santos; J L Pérez Aparicio; E.D.C. Freitas; C.A.N. Conde; A. Laing; L. Ripoll; J. T. White; S. Cárcel; V.M. Gehman; P. Novella; A. L. Ferreira; P. Lebrun; F.J. Mora; F. Monrabal; A. Goldschmidt; N. López-March; D. Shuman; L. Serra

A bstractNEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0νββ) decay of 136Xe. The detector possesses two features of great value for 0νββ searches: energy resolution better than 1% FWHM at the Q value of 136Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10−4 counts keV−1 kg−1 yr−1. Accordingly, the detector will reach a sensitivity to the 0νββ-decay half-life of 2.8 × 1025 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 1025 years after a run of 3 effective years.n


Journal of Instrumentation | 2013

Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

V. Álvarez; I. Bandac; A. Bettini; F.I.G.M. Borges; S. Cárcel; J. Castel; S. Cebrián; A Cervera; C.A.N. Conde; T. Dafni; T.H.V.T. Dias; J. Díaz; M Egorov; R Esteve; P Evtoukhovitch; L.M.P. Fernandes; P Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; J.J. Gómez-Cadenas; D González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; F. J. Iguaz

We deeply acknowledge LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. The NEXT Collaboration acknowledges funding support from the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), Consolider-Ingenio 2010 CSD2007-00042 (CPAN), and under contracts ref. FPA2008-03456, FPA2009-13697-C04-04; FCT(Lisbon) and FEDER under grant PTDC/FIS/103860/2008; the European Commission under the European Research Council T-REX Starting Grant ref. ERC-2009-StG-240054 of the IDEAS program of the 7th EU Framework Program; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Part of these grants are funded by the European Regional Development Fund (ERDF/FEDER). J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. F.I. acknowledges the support from the Eurotalents program.


Journal of Instrumentation | 2013

Ionization and scintillation response of high-pressure xenon gas to alpha particles

V. Álvarez; F.I.G.M. Borges; S. Cárcel; S. Cebrián; A Cervera; C.A.N. Conde; T. Dafni; J. Díaz; M Egorov; R Esteve; P Evtoukhovitch; L.M.P. Fernandes; P. Ferrario; A. L. Ferreira; E.D.C. Freitas; V.M. Gehman; A. Gil; A. Goldschmidt; Haley Louise Gomez; J.J. Gómez-Cadenas; D González-Díaz; R.M. Gutiérrez; J. M. Hauptman; J. A. Hernando Morata; D C Herrera; I. G. Irastorza; M A Jinete; L. Labarga; A. Laing; I. Liubarsky

High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.


arXiv: Instrumentation and Detectors | 2009

The NEXT experiment

J. Díaz; N Yahlali; M Ball; J.A.S. Barata; F I G M Borges; E. Calvo; S. Cárcel; J.M. Carmona; S. Cebrián; A Cervera; X. Cid; C A N Conde; T. Dafni; T H V T Dias; L.M.P. Fernandes; E. Ferrer-Ribas; E.D.C. Freitas; J. Galán; A. Gil; I Gil; I. Giomataris; Haley Louise Gomez; J.J. Gómez-Cadenas; F. Granena; J.A. Hernando-Morata; F. J. Iguaz; I. G. Irastorza; J. A. M. Lopes; D. Martinez; C.M.B. Monteiro

Neutrinoless double beta decay measurements are the most promising experiments both to reveal the Majorana nature of the neutrino and to set a value for its mass. The NEXT project propose to build a High pressure Xenon TPC in the Canfranc Underground Laboratory (Huesca, Spain) to measure double-beta decay of 136Xe, both normal and neutrinoless, with a source mass of 100 kg of enriched xenon.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010

Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

J. Argyriades; R. Arnold; C. Augier; J. Baker; A. S. Barabash; A. Basharina-Freshville; M. Bongrand; C. Bourgeois; D. Breton; M. Briére; G. Broudin-Bay; V. Brudanin; A. J. Caffrey; S. Cebrián; A. Chapon; E. Chauveau; Th. Dafni; J. Díaz; D. Durand; V. Egorov; J. J. Evans; R. Flack; K-I. Fushima; I.G. Irastorza; X. Garrido; Haley Louise Gomez; B. Guillon; A. Holin; K. Holy; J. J. Horkey

The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in

Collaboration


Dive into the L. Serra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cárcel

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cebrián

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Díaz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J.J. Gómez-Cadenas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

V. Álvarez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Goldschmidt

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Dafni

University of Zaragoza

View shared research outputs
Researchain Logo
Decentralizing Knowledge