Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Spinoglio is active.

Publication


Featured researches published by L. Spinoglio.


Astrophysical Journal Supplement Series | 1993

The Extended 12-micron galaxy sample

Brian Rush; Matthew A. Malkan; L. Spinoglio

We have selected an all-sky (|b| ≥ 25°) 12 μm flux-limited sample of 893 galaxies from the IRAS Faint Source Catalog, Version 2 (FSC-2). This new sample contains 2.3 times as many objects as an earlier selection by Spinoglio & Malkan based on the IRAS Point Source Catalog, Version 2. We have obtained accurate total fluxes in the IRAS wavebands by using the ADDSCAN procedure for all objects with FSC-2 12 μm fluxes greater than 0.15 Jy and increasing flux densities from 12 to 60 μm, and denned the sample by imposing a survey limit of 0.22 Jy on the total 12 μm flux. Its completeness is verified, by means of the classical log N - log S and V/Vmax tests, down to 0.30 Jy, below which we have measured the incompleteness down to the survey limit, using the log N -log S plot, for our statistical analysis. We have obtained redshifts (mostly from catalogs) for virtually all (98.4%) the galaxies in the sample. Using existing catalogs of active galaxies, we defined a subsample of 118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, and two blazars (∼13% of the full sample), which is the largest unbiased sample of Seyfert galaxies ever assembled. Since the 12 μm flux has been shown to be about one-fifth of the bolometric flux for Seyfert galaxies and quasars, the subsample of Seyferts (including quasars and blazars) is complete not only to 0.30 Jy at 12 μm but also with respect to a bolometric flux limit of ∼2.0 × 10-10 ergs s-1 cm-2. The average value of V/Vmax for the full sample, corrected for incompleteness at low fluxes, is 0.51 ± 0.04, expected for a complete sample of uniformly distributed galaxies, while the value for the Seyfert galaxy subsample is 0.46 ± 0.10, suggesting that several of the more distant galaxies remain to be identified as Seyferts in our sample. We have derived 12 μm and far-infrared luminosity functions for the AGNs, as well as for the entire sample. The AGN luminosity functions are more complete than those of the optically selected CfA Seyfert galaxies for all luminosities and AGN types. We extracted from our sample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60 μm. The 60 μm luminosity function computed for this subsample is in satisfactory agreement with the ones derived from the bright galaxy sample (BGS) and the deep high-galactic latitude sample, both selected at 60 μm. Over the high-luminosity range where our sample and the BGS overlap, however, our space densities are systematically lower by a factor of ∼1.5, whereas at low luminosities our space densities are higher by about the same amount. Comparable results are obtained when comparing the far-IR luminosity function of our entire sample with the one derived from the BGS. This is not unexpected, because of the bias toward high-luminosity spirals caused by selection at 60 μm.


Astronomy and Astrophysics | 2013

Herschel view of the Taurus B211/3 filament and striations: Evidence of filamentary growth?

P. Palmeirim; P. André; Jason M. Kirk; Derek Ward-Thompson; D. Arzoumanian; V. Könyves; P. Didelon; N. Schneider; M. Benedettini; Sylvain Bontemps; J. Di Francesco; D. Elia; Matthew Jason Griffin; M. Hennemann; T. Hill; P. G. Martin; A. Men’shchikov; S. Molinari; F. Motte; Q. Nguyen Luong; D. Nutter; Nicolas Peretto; S. Pezzuto; A. Roy; K. L. J. Rygl; L. Spinoglio; G. L. White

We present first results from the Herschel Gould Belt survey for the B211/L1495 region in the Taurus molecular cloud. Thanks to their high sensitivity and dynamic range, the Herschel images reveal the structure of the dense, star-forming filament B211 with unprecedented detail, along with the presence of striations perpendicular to the filament and generally oriented along the magnetic field direction as traced by optical polarization vectors. Based on the column density and dust temperature maps derived from the Herschel data, we find that the radial density profile of the B211 filament approaches power-law behavior, ρ ∝ r−2.0± 0.4, at large radii and that the temperature profile exhibits a marked drop at small radii. The observed density and temperature profiles of the B211 filament are in good agreement with a theoretical model of a cylindrical filament undergoing gravitational contraction with a polytropic equation of state: P ∝ ργ and T ∝ ργ−1, with γ = 0.97 ± 0.01 < 1 (i.e., not strictly isothermal). The morphology of the column density map, where some of the perpendicular striations are apparently connected to the B211 filament, further suggests that the material may be accreting along the striations onto the main filament. The typical velocities expected for the infalling material in this picture are ~0.5–1 km s-1, which are consistent with the existing kinematical constraints from previous CO observations.


Astronomy and Astrophysics | 2010

Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231

P. van der Werf; Kate Gudrun Isaak; R. Meijerink; Marco Spaans; Adam John Rykala; T. Fulton; A. F. Loenen; F. Walter; A. Weiß; Lee Armus; J. Fischer; F. P. Israel; A. I. Harris; Sylvain Veilleux; C. Henkel; G. Savini; S. Lord; H. A. Smith; E. González-Alfonso; David A. Naylor; Susanne Aalto; V. Charmandaris; K. M. Dasyra; A. S. Evans; Yu Gao; T. R. Greve; R. Güsten; C. Kramer; J. Martin-Pintado; Joseph M. Mazzarella

We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.


Astronomy and Astrophysics | 2010

The Aquila prestellar core population revealed by Herschel

V. Könyves; P. André; A. Men'shchikov; N. Schneider; D. Arzoumanian; Sylvain Bontemps; M. Attard; F. Motte; P. Didelon; A. Maury; Alain Abergel; B. Ali; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; Peter G. Martin; V. Minier; S. Molinari; G. Olofsson; S. Pezzuto; D. Russeil; Helene Roussel

The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel Reference Survey

A. Boselli; Stephen Anthony Eales; Luca Cortese; G. J. Bendo; P. Chanial; V. Buat; Jonathan Ivor Davies; Robbie Richard Auld; E. Rigby; M. Baes; M. J. Barlow; James J. Bock; M. Bradford; N. Castro-Rodriguez; S. Charlot; D. L. Clements; D. Cormier; E. Dwek; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony; Kate Gudrun Isaak; L. Levenson; N. Lu; S. Madden

The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.


Astronomy and Astrophysics | 2010

Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel

A. Men'shchikov; P. André; P. Didelon; V. Könyves; N. Schneider; F. Motte; Sylvain Bontemps; D. Arzoumanian; M. Attard; Alain Abergel; J.-P. Baluteau; J.-Ph. Bernard; L. Cambrésy; P. Cox; J. Di Francesco; A. M. di Giorgio; Matthew Joseph Griffin; Peter Charles Hargrave; M. Huang; Jason M. Kirk; J. Z. Li; P. G. Martin; V. Minier; M.-A. Miville-Deschênes; S. Molinari; G. Olofsson; S. Pezzuto; H. Roussel; D. Russeil; P. Saraceno

Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multi-scale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of 35 arcsec in Aquila and 59 arcsec in Polaris (9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.


Astronomy and Astrophysics | 2010

Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects

F. Motte; A. Zavagno; Sylvain Bontemps; N. Schneider; M. Hennemann; J. Di Francesco; P. André; P. Saraceno; Matthew Joseph Griffin; A. Marston; Derek Ward-Thompson; G. J. White; V. Minier; A. Men'shchikov; T. Hill; Alain Abergel; L. D. Anderson; H. Aussel; Zoltan Balog; J.-P. Baluteau; J.-Ph. Bernard; P. Cox; T. Csengeri; L. Deharveng; P. Didelon; A. M. di Giorgio; Peter Charles Hargrave; M. Huang; Jason M. Kirk; S. J. Leeks

We present the initial highlights of the HOBYS key program, which are based on Herschel images of the Rosette molecular complex and maps of the RCW120 H ii region. Using both SPIRE at 250/350/500 μm and PACS at 70/160 μm or 100/160 μm, the HOBYS survey provides an unbiased and complete census of intermediate- to high-mass young stellar objects, some of which are not detected by Spitzer. Key core properties, such as bolometric luminosity and mass (as derived from spectral energy distributions), are used to constrain their evolutionary stages. We identify a handful of high-mass prestellar cores and show that their lifetimes could be shorter in the Rosette molecular complex than in nearby low-mass star-forming regions. We also quantify the impact of expanding H ii regions on the star formation process acting in both Rosette and RCW 120.


Astronomy and Astrophysics | 2012

The dust scaling relations of the Herschel Reference Survey

Luca Cortese; L. Ciesla; A. Boselli; S. Bianchi; Haley Louise Gomez; Matthew William L. Smith; G. J. Bendo; Stephen Anthony Eales; Michael Pohlen; M. Baes; Edvige Corbelli; Jonathan Ivor Davies; T. M. Hughes; L. K. Hunt; S. C. Madden; D. Pierini; S. di Serego Alighieri; Stefano Zibetti; M. Boquien; D. L. Clements; A. Cooray; M. Galametz; L. Magrini; C. Pappalardo; L. Spinoglio; C. Vlahakis

We combine new Herschel/SPIRE sub-millimeter observations with existing multiwavelength data to investigate the dust scaling relations of the Herschel Reference Survey, a magnitude-, volume-limited sample of similar to 300 nearby galaxies in different environments. We show that the dust-to-stellar mass ratio anti-correlates with stellar mass, stellar mass surface density and NUV - r colour across the whole range of parameters covered by our sample. Moreover, the dust-to-stellar mass ratio decreases significantly when moving from late-to early-type galaxies. These scaling relations are similar to those observed for the Hi gas-fraction, supporting the idea that the cold dust is tightly coupled to the cold atomic gas component in the interstellar medium. We also find a weak increase of the dust-to-Hi mass ratio with stellar mass and colour but no trend is seen with stellar mass surface density. By comparing galaxies in different environments we show that, although these scaling relations are followed by both cluster and field galaxies, Hi-deficient systems have, at fixed stellar mass, stellar mass surface density and morphological type systematically lower dust-to-stellar mass and higher dust-to-Hi mass ratios than Hi-normal/field galaxies. This provides clear evidence that dust is removed from the star-forming disk of cluster galaxies but the effect of the environment is less strong than what is observed in the case of the Hi disk. Such effects naturally arise if the dust disk is less extended than the Hi and follows more closely the distribution of the molecular gas phase, i.e., if the dust-to-atomic gas ratio monotonically decreases with distance from the galactic center.


Astronomy and Astrophysics | 2010

The Herschel Space Observatory view of dust in M81

G. J. Bendo; C. D. Wilson; Michael Pohlen; Marc Sauvage; Robbie Richard Auld; M. Baes; M. J. Barlow; J. J. Bock; A. Boselli; M. Bradford; V. Buat; N. Castro-Rodriguez; P. Chanial; S. Charlot; L. Ciesla; D. L. Clements; A. Cooray; D. Cormier; Luca Cortese; Jonathan Ivor Davies; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony

We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70–500 μm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 μm are primarily dependent on radius but that the ratio of 70 to 160 μm emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160–500 μm emission traces 15–30 K dust heated by evolved stars in the bulge and disc whereas the 70 μm emission includes dust heated by the active galactic nucleus and young stars in star forming regions.


The Astrophysical Journal | 2012

The Herschel Reference Survey: dust in early-type galaxies and across the Hubble Sequence

Matthew William L. Smith; Haley Louise Gomez; Stephen Anthony Eales; L. Ciesla; A. Boselli; Luca Cortese; G. J. Bendo; M. Baes; S. Bianchi; M. Clemens; D. L. Clements; A. Cooray; Jonathan Ivor Davies; I. De Looze; S. di Serego Alighieri; J. Fritz; G. Gavazzi; Walter Kieran Gear; S. Madden; Erin Mentuch; P. Panuzzo; Michael Pohlen; L. Spinoglio; J. Verstappen; C. Vlahakis; C. D. Wilson; E. M. Xilouris

We present Herschel observations of 62 early-type galaxies (ETGs), including 39 galaxies morphologically classified as S0+S0a and 23 galaxies classified as ellipticals using SPIRE at 250, 350, and 500 mu m as part of the volume-limited Herschel Reference Survey (HRS). We detect dust emission in 24% of the ellipticals and 62% of the S0s. The mean temperature of the dust is \textless T-d \textgreater = 23.9 +/- 0.8 K, warmer than that found for late-type galaxies in the Virgo Cluster. The mean dust mass for the entire detected early-type sample is log M-d = 6.1 +/- 0.1 M-circle dot with a mean dust-to-stellar-mass ratio of log(M-d/M-*) = -4.3 +/- 0.1. Including the non-detections, these parameters are log M-d = 5.6 +/- 0.1 and log(M-d/M-*) = -5.1 +/- 0.1, respectively. The average dust-to-stellar-mass ratio for the early-type sample is fifty times lower, with larger dispersion, than the spiral galaxies observed as part of the HRS, and there is an order-of-magnitude decline in M-d/M-* between the S0s and ellipticals. We use UV and optical photometry to show that virtually all the galaxies lie close to the red sequence yet the large number of detections of cool dust, the gas-to-dust ratios, and the ratios of far-infrared to radio emission all suggest that many ETGs contain a cool interstellar medium similar to that in late-type galaxies. We show that the sizes of the dust sources in S0s are much smaller than those in early-type spirals and the decrease in the dust-to-stellar-mass ratio from early-type spirals to S0s cannot simply be explained by an increase in the bulge-to-disk ratio. These results suggest that the disks in S0s contain much less dust (and presumably gas) than the disks of early-type spirals and this cannot be explained simply by current environmental effects, such as ram-pressure stripping. The wide range in the dust-to-stellar-mass ratio for ETGs and the lack of a correlation between dust mass and optical luminosity suggest that much of the dust in the ETGs detected by Herschel has been acquired as the result of interactions, although we show these are unlikely to have had a major effect on the stellar masses of the ETGs. The Herschel observations tentatively suggest that in the most massive systems, the mass of interstellar medium is unconnected to the evolution of the stellar populations in these galaxies.

Collaboration


Dive into the L. Spinoglio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. J. Bendo

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

A. Boselli

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. De Looze

University College London

View shared research outputs
Top Co-Authors

Avatar

Luca Cortese

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge