Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Steffen is active.

Publication


Featured researches published by L. Steffen.


Nature | 2012

Implementation of a Toffoli gate with superconducting circuits

Arkady Fedorov; L. Steffen; M. Baur; M. P. da Silva; A. Wallraff

The Toffoli gate is a three-quantum-bit (three-qubit) operation that inverts the state of a target qubit conditioned on the state of two control qubits. It makes universal reversible classical computation possible and, together with a Hadamard gate, forms a universal set of gates in quantum computation. It is also a key element in quantum error correction schemes. The Toffoli gate has been implemented in nuclear magnetic resonance, linear optics and ion trap systems. Experiments with superconducting qubits have also shown significant progress recently: two-qubit algorithms and two-qubit process tomography have been implemented, three-qubit entangled states have been prepared, first steps towards quantum teleportation have been taken and work on quantum computing architectures has been done. Implementation of the Toffoli gate with only single- and two-qubit gates requires six controlled-NOT gates and ten single-qubit operations, and has not been realized in any system owing to current limits on coherence. Here we implement a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubits, we have significantly reduced the number of elementary gates needed for the implementation of the Toffoli gate, relative to that required in theoretical proposals using only two-level systems. Using full process tomography and Monte Carlo process certification, we completely characterize the Toffoli gate acting on three independent qubits, measuring a fidelity of 68.5 ± 0.5 per cent. A similar approach to realizing characteristic features of a Toffoli-class gate has been demonstrated with two qubits and a resonator and achieved a limited characterization considering only the phase fidelity. Our results reinforce the potential of macroscopic superconducting qubits for the implementation of complex quantum operations with the possibility of quantum error correction.


Journal of Applied Physics | 2008

Coplanar waveguide resonators for circuit quantum electrodynamics

M. Göppl; A. Fragner; M. Baur; R. Bianchetti; Stefan Filipp; J. M. Fink; P. J. Leek; G. Puebla; L. Steffen; A. Wallraff

High quality on-chip microwave resonators have recently found prominent new applications in quantum optics and quantum information processing experiments with superconducting electronic circuits, a field now known as circuit quantum electrodynamics (QED). They are also used as single photon detectors and parametric amplifiers. Here we analyze the physical properties of coplanar waveguide resonators and their relation to the materials properties for use in circuit QED. We have designed and fabricated resonators with fundamental frequencies from 2 to 9 GHz and quality factors ranging from a few hundreds to a several hundred thousands controlled by appropriately designed input and output coupling capacitors. The microwave transmission spectra measured at temperatures of 20 mK are shown to be in good agreement with theoretical lumped element and distributed element transmission matrix models. In particular, the experimentally determined resonance frequencies, quality factors, and insertion losses are fully an...


Physical Review Letters | 2011

Observation of resonant photon blockade at microwave frequencies using correlation function measurements.

C. Lang; Deniz Bozyigit; C. Eichler; L. Steffen; J. M. Fink; A. A. Abdumalikov Jr.; M. Baur; Stefan Filipp; da Silva Mp; Alexandre Blais; A. Wallraff

Creating a train of single photons and monitoring its propagation and interaction is challenging in most physical systems, as photons generally interact very weakly with other systems. However, when confining microwave frequency photons in a transmission line resonator, effective photon-photon interactions can be mediated by qubits embedded in the resonator. Here, we observe the phenomenon of photon blockade through second-order correlation function measurements. The experiments clearly demonstrate antibunching in a continuously pumped source of single microwave photons measured by using microwave beam splitters, linear amplifiers, and quadrature amplitude detectors. We also investigate resonance fluorescence and Rayleigh scattering in Mollow-triplet-like spectra.


Nature | 2013

Deterministic quantum teleportation with feed-forward in a solid state system

L. Steffen; Yves Salathe; Markus Oppliger; Philipp Kurpiers; M. Baur; C. Lang; C. Eichler; G. Puebla-Hellmann; Arkady Fedorov; A. Wallraff

Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 104 s−1, exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.


Physical Review Letters | 2009

Dressed Collective Qubit States and the Tavis-Cummings Model in Circuit QED

J. M. Fink; R. Bianchetti; M. Baur; M. Göppl; L. Steffen; Stefan Filipp; P. J. Leek; Alexandre Blais; A. Wallraff

We present an ideal realization of the Tavis-Cummings model in the absence of atom number and coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits at fixed positions into a transmission line resonator. Measuring the vacuum Rabi mode splitting with one, two, and three qubits strongly coupled to the cavity field, we explore both bright and dark dressed collective multiqubit states and observe the discrete square root N scaling of the collective dipole coupling strength. Our experiments demonstrate a novel approach to explore collective states, such as the W state, in a fully globally and locally controllable quantum system. Our scalable approach is interesting for solid-state quantum information processing and for fundamental multiatom quantum optics experiments with fixed atom numbers.


Physical Review Letters | 2011

Observation of Two-Mode Squeezing in the Microwave Frequency Domain

C. Eichler; Deniz Bozyigit; C. Lang; M. Baur; L. Steffen; J. M. Fink; Stefan Filipp; A. Wallraff

Continuous variable entanglement between two modes of a radiation field is usually studied at optical frequencies. As an important step towards the observation of entanglement between propagating microwave photons we demonstrate the experimental state reconstruction of two field modes in the microwave domain. In particular, we generate two-mode correlated states with a Josephson parametric amplifier and detect all four quadrature components simultaneously in a two-channel heterodyne setup using amplitude detectors. Analyzing two-dimensional phase space histograms for all possible pairs of quadratures allows us to determine the full covariance matrix and reconstruct the four-dimensional Wigner function. We demonstrate strong correlations between the quadrature amplitude noise in the two modes. Under ideal conditions two-mode squeezing below the standard quantum limit should be observable in future experiments.


Physical Review Letters | 2011

Experimental State Tomography of Itinerant Single Microwave Photons

C. Eichler; Deniz Bozyigit; C. Lang; L. Steffen; J. M. Fink; A. Wallraff

A wide range of experiments studying microwave photons localized in superconducting cavities have made important contributions to our understanding of the quantum properties of radiation. Propagating microwave photons, however, have so far been studied much less intensely. Here we present measurements in which we reconstruct the Wigner function of itinerant single photon Fock states and their superposition with the vacuum using linear amplifiers and quadrature amplitude detectors. We have developed efficient methods to separate the detected single photon signal from the noise added by the amplifier by analyzing the moments of the measured amplitude distribution up to 4th order. This work is expected to enable studies of propagating microwaves in the context of linear quantum optics.


Physical Review Letters | 2009

Two-qubit state tomography using a joint dispersive readout.

Stefan Filipp; P. Maurer; P. J. Leek; M. Baur; R. Bianchetti; J. M. Fink; M. Göppl; L. Steffen; Jay Gambetta; Alexandre Blais; A. Wallraff

Quantum state tomography is an important tool in quantum information science for complete characterization of multiqubit states and their correlations. Here we report a method to perform a joint simultaneous readout of two superconducting qubits dispersively coupled to the same mode of a microwave transmission line resonator. The nonlinear dependence of the resonator transmission on the qubit state dependent cavity frequency allows us to extract the full two-qubit correlations without the need for single-shot readout of individual qubits. We employ standard tomographic techniques to reconstruct the density matrix of two-qubit quantum states.


Physical Review Letters | 2009

Measurement of Autler-Townes and Mollow Transitions in a Strongly Driven Superconducting Qubit

M. Baur; Stefan Filipp; R. Bianchetti; J. M. Fink; M. Göppl; L. Steffen; P. J. Leek; Alexandre Blais; A. Wallraff

We present spectroscopic measurements of the Autler-Townes doublet and the sidebands of the Mollow triplet in a driven superconducting qubit. The ground to first excited state transition of the qubit is strongly pumped while the resulting dressed qubit spectrum is probed with a weak tone. The corresponding transitions are detected using dispersive readout of the qubit coupled off resonantly to a microwave transmission line resonator. The observed frequencies of the Autler-Townes and Mollow spectral lines are in good agreement with a dispersive Jaynes-Cummings model taking into account higher excited qubit states and dispersive level shifts due to off-resonant drives.


Physical Review B | 2009

Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

P. J. Leek; Stefan Filipp; P. Maurer; M. Baur; R. Bianchetti; J. M. Fink; M. Göppl; L. Steffen; A. Wallraff

We demonstrate the time-resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. As an example of using these sideband transitions for a two-qubit operation, we implement a pulse sequence that first entangles one qubit with the resonator and subsequently distributes the entanglement between two qubits. We show the generation of 75% fidelity Bell states by this method. The full density matrix of the two-qubit system is extracted using joint measurement and quantum state tomography and shows close agreement with numerical simulation.

Collaboration


Dive into the L. Steffen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Baur

Technische Hochschule

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Blais

Canadian Institute for Advanced Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Baur

Technische Hochschule

View shared research outputs
Researchain Logo
Decentralizing Knowledge