L. Takalo
University of Turku
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Takalo.
Astronomy and Astrophysics | 2006
M. Villata; C. M. Raiteri; Thomas J. Balonek; Margo F. Aller; S. G. Jorstad; O. M. Kurtanidze; Fabrizio Nicastro; K. Nilsson; Hugh D. Aller; Akira Arai; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; C. S. Buemi; M. Böttcher; D. Carosati; R. Casas; A. Caulet; W. P. Chen; P. S. Chiang; Yi Chou; S. Ciprini; J. M. Coloma; G. Di Rico; C. Díaz; N. V. Efimova; C. Forsyth; A. Frasca; L. Fuhrmann
Context. The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was
Astronomy and Astrophysics | 2005
C. M. Raiteri; M. Villata; M. A. Ibrahimov; V. M. Larionov; M. Kadler; Hugh D. Aller; Margo F. Aller; Y. Y. Kovalev; L. Lanteri; K. Nilsson; I. E. Papadakis; T. Pursimo; Gustavo E. Romero; H. Teräsranta; M. Tornikoski; A. A. Arkharov; David A. Barnaby; A. Berdyugin; M. Böttcher; K. Byckling; Michael T. Carini; D. Carosati; Sergio A. Cellone; S. Ciprini; J. A. Combi; S. Crapanzano; R. Crowe; A. Di Paola; M. Dolci; L. Fuhrmann
R=12.0
Astronomy and Astrophysics | 2010
C. M. Raiteri; M. Villata; L. Bruschini; Alessandro Capetti; O. M. Kurtanidze; V. M. Larionov; Patrizia Romano; S. Vercellone; I. Agudo; Hugh D. Aller; Margo F. Aller; A. A. Arkharov; U. Bach; A. Berdyugin; D. A. Blinov; M. Böttcher; C. S. Buemi; P. Calcidese; D. Carosati; R. Casas; W. P. Chen; J. M. Coloma; C. Diltz; A. Di Paola; M. Dolci; N. V. Efimova; E. Forné; J. L. Gómez; M. A. Gurwell; A. Hakola
, which represents the most luminous quasar state thus far observed (
Astronomy and Astrophysics | 2011
C. M. Raiteri; M. Villata; Margo F. Aller; M. A. Gurwell; O. M. Kurtanidze; A. Lähteenmäki; V. M. Larionov; Patrizia Romano; S. Vercellone; I. Agudo; Hugh D. Aller; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; E. V. Borisova; M. Böttcher; O. J. A. Bravo Calle; C. S. Buemi; P. Calcidese; D. Carosati; R. Casas; W. P. Chen; N. V. Efimova; J. L. Gómez; C. Gusbar; K. Hawkins; J. Heidt; D. Hiriart
M_B \sim -31.4
Astronomy and Astrophysics | 2012
C. M. Raiteri; M. Villata; Paul S. Smith; V. M. Larionov; J. A. Acosta-Pulido; Margo F. Aller; F. D'Ammando; Gurwell; S. G. Jorstad; M. Joshi; O. M. Kurtanidze; A. Lähteenmäki; D. O. Mirzaqulov; I. Agudo; Hugh D. Aller; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; K. Blumenthal; C. S. Buemi; A. Bueno; T.M. Carleton; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; A. Di Paola
). Aims. In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Methods. Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. Results. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm the brightening of the radio core and show an increasing polarization. An exceptionally bright X-ray state was detected in May 2005, corresponding to the rising mm flux and suggesting an inverse-Compton nature of the hard X-ray spectrum. Conclusions. A further multifrequency monitoring effort is needed to follow the next phases of this unprecedented event.
Monthly Notices of the Royal Astronomical Society | 2016
H. Jermak; Iain A. Steele; E. Lindfors; T. Hovatta; K. Nilsson; G. P. Lamb; Carole G. Mundell; U. Barres de Almeida; A. Berdyugin; V. Kadenius; R. Reinthal; L. Takalo
A multiwavelength campaign to observe the BL Lac object AO 0235+16 (z = 0.94) was set up by the Whole Earth Blazar Telescope (WEBT) collaboration during the observing seasons 2003-2004 and 2004-2005, involving radio, near-IR and optical photometric monitoring, VLBA monitoring, optical spectral monitoring, and three pointings by the XMM-Newton satellite. Here we report on the results of the first season, which involved the participation of 24 optical and near-IR telescopes and 4 radio telescopes, as well as the first XMM-Newton pointing, which occurred on January 18-19, 2004. Unpublished data from previous epochs were also collected (from 5 optical-NIR and 3 radio telescopes), in order to fill the gap between the end of the period presented in Raiteri et al. (2001) and the start of the WEBT campaign. The contribution of the southern AGN, 2 arcsec distant from the source, is taken into account. It is found to especially affect the blue part of the optical spectrum when the source is faint. In the optical and near-IR the source has been very active in the last 3 years, although it has been rather faint most of the time, with noticeable variations of more than a magnitude over a few days. In contrast, in the radio bands it appears to have been quiescent since early 2000. The major radio (and optical) outburst predicted to peak around February-March 2004 (with a six month uncertainty) has not occurred yet. When comparing our results with the historical light curves, two different behaviours seem to characterize the optical outbursts: only the major events present a radio counterpart. The X-ray spectra obtained by the three EPIC detectors are well fitted by a power law with extra-absorption at z = 0.524; the energy index in the 0.2-10 keV range is well constrained: a = 0.645 ± 0.028 and the 1 keV flux density is 0.311 ± 0.008 μJy. The analysis of the X-ray light curves reveals that no significant variations occurred during the pointing. In contrast, simultaneous dense radio monitoring with the 100 m telescope at Effelsberg shows a ∼2-3% flux decrease in 6-7 h, which, if intrinsic, would imply a brightness temperature well above the Compton limit and hence a lower limit to the Doppler factor 6 > 46.
Astronomy and Astrophysics | 2016
E. Lindfors; T. Hovatta; K. Nilsson; R. Reinthal; V. Fallah Ramazani; V. Pavlidou; W. Max-Moerbeck; J. L. Richards; A. Berdyugin; L. Takalo; A. Sillanpää; Anthony C. S. Readhead
Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008‐2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMMNewton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results. The GASP-WEBT observations show an optical flare in 2008 February‐March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable . The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (�4‐7%) flux variability on an hour time scale. The Swift X-ray d ata reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting reg ions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral v ariability. Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen, with strong consequences on the source multiwavelength behaviour.