L. Todor
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Todor.
Physical Review C | 2012
A. Puckett; E. Brash; O. Gayou; M. K. Jones; L. Pentchev; Charles F. Perdrisat; V. Punjabi; K. A. Aniol; T. Averett; F. Benmokhtar; W. Bertozzi; L. Bimbot; J. R. Calarco; C. Cavata; Z. Chai; C.C. Chang; T. H. Chang; J. P. Chen; E. Chudakov; R. De Leo; S Dieterich; R. Endres; M. B. Epstein; S. Escoffier; Kevin Fissum; H. Fonvieille; S. Frullani; J. Gao; F. Garibaldi; S. Gilad
Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Labs Hall A measured R at four Q(2) values in the range 3.5 GeV2 <= Q(2) <= 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis. (Less)