Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. W. Goetzke is active.

Publication


Featured researches published by L. W. Goetzke.


Physical Review Letters | 2013

Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni; L. W. Goetzke

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129Xe and 131Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c², with a minimum cross section of 3.5×10(-40) cm² at a WIMP mass of 45 GeV/c², at 90% confidence level.


Physical Review D | 2014

First Axion Results from the XENON100 Experiment

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; A. Brown; E. Brown; Stefan Brünner; G. Bruno; R. Budnik; João Cardoso; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Geis

We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, g Ae , has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting g Ae larger than 7.7×10 −12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80  eV/c 2 , respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain g Ae to be lower than 1×10 −12 (90% C.L.) for masses between 5 and 10  keV/c 2 .


Physical Review C | 2011

New Measurement of the Scintillation Efficiency of Low-Energy Nuclear Recoils in Liquid Xenon

G. Plante; Karl-Ludwig Giboni; B. Choi; K. E. Lim; E. Aprile; R. F. Lang; A. J. Melgarejo Fernandez; R. Budnik; L. W. Goetzke

Particle detectors that use liquid xenon (LXe) as detection medium are among the leading technologies in the search for dark matter weakly interacting massive particles (WIMPs). A key enabling element has been the low-energy detection threshold for recoiling nuclei produced by the interaction of WIMPs in LXe targets. In these detectors, the nuclear recoil energy scale is based on the LXe scintillation signal and thus requires knowledge of the relative scintillation efficiency of nuclear recoils, Leff. The uncertainty in Leff at low energies is the largest systematic uncertainty in the reported results from LXe WIMP searches at low masses. In the context of the XENON Dark Matter project, a new LXe scintillation detector has been designed and built specifically for the measurement of Leff at low energies, with an emphasis on maximizing the scintillation light detection efficiency to obtain the lowest possible energy threshold. We report new measurements of Leff at low energies performed with this detector. Our results suggest a Leff which slowly decreases with energy, from 0.144 +/- 0.009 at 15 keV down to 0.088 +0.014 -0.015 at 3 keV.


Astroparticle Physics | 2014

Analysis of the XENON100 Dark Matter Search Data

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; A. Behrens; P. Beltrame; K. Bokeloh; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; D. Cline; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; Karl-Ludwig Giboni; L. W. Goetzke; C. Grignon; E. Gross; W. Hampel

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.


Journal of Physics G | 2014

Observation and applications of single-electron charge signals in the XENON100 experiment

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni

The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.


European Physical Journal C | 2015

Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

E. Aprile; F. Agostini; M. Alfonsi; L. Arazi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; Lukas Bütikofer; João Cardoso; Daniel Coderre; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; A. Di Giovanni; E. Duchovni; S. Fattori; A. D. Ferella; A. Fieguth

The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.


Journal of Instrumentation | 2014

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

E. Aprile; F. Agostini; M. Alfonsi; K. Arisaka; F. Arneodo; M. Auger; C. Balan; P. Barrow; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; A. Breskin; Abbe Brown; E. Brown; S. Bruenner; G. Bruno; R. Budnik; João Cardoso; A. P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; M. Garbini; C. Geis

XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.


Review of Scientific Instruments | 2013

An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors

E. Aprile; Taehyun Yoon; Andre Loose; L. W. Goetzke; Tanya Zelevinsky

We have developed an atom trap trace analysis (ATTA) system to measure Kr in Xe at the part per trillion (ppt) level, a prerequisite for the sensitivity achievable with liquid xenon dark matter detectors beyond the current generation. Since Ar and Kr have similar laser cooling wavelengths, the apparatus has been tested with Ar to avoid contamination prior to measuring Xe samples. A radio-frequency plasma discharge generates a beam of metastable atoms which is optically collimated, slowed, and trapped using standard magneto-optical techniques. Based on the measured overall system efficiency of 1.2 × 10(-8) (detection mode), we expect the ATTA system to reach the design goal sensitivity to ppt concentrations of Kr in Xe in <2 h.


Physical Review D | 2012

Measurement of the Scintillation Yield of Low-Energy Electrons in Liquid Xenon

E. Aprile; R. Budnik; B. Choi; H. Contreras; Karl-Ludwig Giboni; L. W. Goetzke; J. Koglin; R. F. Lang; K. E. Lim; A. J. Melgarejo Fernandez; R. Persiani; G. Plante; A. Rizzo

We have measured the energy dependence of the liquid xenon (LXe) scintillation yield of electrons with energy between 2.1 and 120.2keV, using the Compton coincidence technique. A LXe scintillation detector with a very high light detection efficiency was irradiated with 137Cs {\gamma} rays and the energy of the Compton-scattered {\gamma} rays was measured with a high-purity germanium (HPGe) detector placed at different scattering angles. The excellent energy resolution of the HPGe detector allows the selection of events with Compton electrons of known energy in the LXe detector. We find that the scintillation yield initially increases as the electron energy decreases from 120 keV to about 60keV but then decreases by about 30% from 60keV to 2keV. The measured scintillation yield was also measured with conversion electrons from the 32.1 keV and 9.4 keV transitions of the 83mKr isomer, used as an internal calibration source. We find that the scintillation yield of the 32.1 keV transition is compatible with that obtained from the Compton coincidence measurement. On the other hand, the yield for the 9.4keV transition is much higher than that measured for a Compton electron of the same energy. We interpret the enhancement in the scintillation yield as due to the enhanced recombination rate in the presence of Xe ions left from the 32.1 keV transition, which precedes the 9.4 keV one by 220 ns, on average.


Journal of Physics G | 2013

The neutron background of the XENON100 dark matter search experiment

E. Aprile; M. Alfonsi; K. Arisaka; F. Arneodo; C. Balan; L. Baudis; B. Bauermeister; A. Behrens; P. Beltrame; K. Bokeloh; Abbe Brown; E. Brown; G. Bruno; R. Budnik; João Cardoso; W. T. Chen; B. Choi; A.P. Colijn; H. Contreras; J. P. Cussonneau; M.P. Decowski; E. Duchovni; S. Fattori; A. D. Ferella; W. Fulgione; F. Gao; M. Garbini; C. Ghag; Karl-Ludwig Giboni; L. W. Goetzke

The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (α, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on Monte Carlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by the XENON100 experiment in 2011 and 2012, 0.11 events and 0.17 events, respectively, and conclude that they do not limit the sensitivity of the experiment.TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.

Collaboration


Dive into the L. W. Goetzke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Arneodo

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Brown

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

K. Arisaka

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge