Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.W. Yan is active.

Publication


Featured researches published by L.W. Yan.


Nuclear Fusion | 2007

Experimental progress on zonal flow physics in toroidal plasmas

A. Fujisawa; T. Ido; A. Shimizu; S. Okamura; K. Matsuoka; H. Iguchi; Y. Hamada; H. Nakano; S. Ohshima; K. Itoh; K. Hoshino; K. Shinohara; Y. Miura; Y. Nagashima; S.-I. Itoh; Michael Shats; Hua Xia; J.Q. Dong; L.W. Yan; K.J. Zhao; G. D. Conway; U. Stroth; A. V. Melnikov; L. G. Eliseev; Sergey E. Lysenko; S. V. Perfilov; C. Hidalgo; G. R. Tynan; C. Holland; P. H. Diamond

The present status of experiments on zonal flows in magnetic confinement experiments is examined. The innovative use of traditional and modern diagnostics has revealed unambiguously the existence of zonal flows, their spatio-temporal characteristics, their relationship to turbulence and their effects on confinement. In particular, a number of observations have been accumulated on the oscillatory branch of zonal flows, named geodesic acoustic modes, suggesting the necessity for theories to give their proper description. In addition to these basic properties of zonal flows, several new methods have elucidated the processes of zonal flow generation from turbulence. Further investigation of the relationship between zonal flows and confinement is strongly encouraged as cross-device activity including low temperature, toroidal and linear devices.


Physics of Plasmas | 2008

Spectral features of the geodesic acoustic mode and its interaction with turbulence in a tokamak plasma

T. Lan; A.D. Liu; C. X. Yu; L.W. Yan; W. Y. Hong; K.J. Zhao; J.Q. Dong; J. Qian; J. Cheng; D. L. Yu; Q. W. Yang

The three-dimensional wavenumber and frequency spectrum for the geodesic acoustic mode (GAM) has been measured in the HuanLiuqi-2A tokamak for the first time. The spectrum provides definite evidence for the GAM, which is characterized by kθ=kϕ=0 and krρi≈0.04−0.09 with the full width at half-maximum Δkrρi≈0.03−0.07. The localized GAM packet is observed to propagate outward in the radial direction with nearly the same phase and group velocity. The envelopes of the radial electric field and density fluctuations are observed to be modulated by the GAM. By comparing the experimental result with that of the envelope analysis using model signals, the mechanism of the envelope modulation has been identified. The results strongly suggest that the envelope modulation of the Er fluctuations is dominantly caused by the direct regulation of the GAM during the GAM generation in the energy-conserving triad interaction, and the envelope modulation of the density fluctuations is induced by the GAM shearing effect, which...


Nuclear Fusion | 2012

ELM mitigation by supersonic molecular beam injection into the H-mode pedestal in the HL-2A tokamak

Weiwen Xiao; P. H. Diamond; X.L. Zou; J.Q. Dong; X.T. Ding; L. H. Yao; B.B. Feng; Chengyuan Chen; W. L. Zhong; M. Xu; Baoshan Yuan; T. Rhee; J.M. Kwon; Z. B. Shi; J. Rao; G.J. Lei; J.Y. Cao; J. Zhou; M. Huang; D.L. Yu; Y. Huang; K.J. Zhao; Z.Y. Cui; X.M. Song; Y.D. Gao; Yipo Zhang; J. Cheng; X.Y. Han; Y. Zhou; Y.B. Dong

Density profiles in the pedestal region (H-mode) are measured in HL-2A and the characteristics of the density pedestal are described. Cold particle deposition by supersonic molecular beam injection (SMBI) within the pedestal is verified. Edge-localized mode (ELM) mitigation by SMBI into the H-mode pedestal is demonstrated and the relevant physics is elucidated. The sensitivity of the effect to SMBI pressure and duration is studied. Following SMBI, the ELM frequency increases and the ELM amplitude decreases for a finite duration. Increases in ELM frequency of are achieved. This experiment argues that the ELM mitigation results from an increase in higher frequency fluctuations and transport events in the pedestal, which are caused by SMBI. These inhibit the occurrence of large transport events which span the entire pedestal width. The observed change in the density pedestal profiles and edge particle flux spectrum with and without SMBI supports this interpretation. An analysis of the experiment and a model shows that ELMs can be mitigated by SMBI with shallow particle penetration into the pedestal.


Nuclear Fusion | 2010

Preliminary results of ELMy H-mode experiments on the HL-2A tokamak

Xuru Duan; J.Q. Dong; L.W. Yan; X.T. Ding; Q. W. Yang; J. Rao; D. Q. Liu; W. M. Xuan; L. Chen; X. D. Li; G.J. Lei; J.Y. Cao; Zizheng Cao; X.M. Song; Y. Huang; Yi Liu; W. C. Mao; Q. M. Wang; Z.Y. Cui; X.Q. Ji; B. Li; G. S. Li; H. J. Li; C. W. Luo; Yong-Dong Wang; L. H. Yao; L. Y. Yao; Jian Zhang; J. Zhou; Y. Zhou

Typical ELMy H-mode discharges have been achieved on the HL-2A tokamak with combined auxiliary heating of NBI and ECRH. The minimum power required is about 1.1 MW at a density of 1.6 × 1019 m−3 and increases with a decrease in density, almost independent of the launching order of the ECRH and NBI heating. The energy loss by each edge localized mode (ELM) burst is estimated to be lower than 3% of the total stored energy. At a frequency of typically 400 Hz, the energy confinement time is only marginally reduced by the ELMs. The supersonic molecular beam injection fuelling is found to be beneficial for triggering an L–H transition due to less induced recycling and higher fuelling efficiency. The dwell time of the L–H transition is 20–200 ms, and tends to decrease as the power increases. The delay time of the H–L transition is 10–30 ms for most discharges and is comparable to the energy confinement time. The ELMs with a period of 1–3 ms are sustained for more than ten times the energy confinement time with enhanced confinement factor H89 > 1.5, which tends to decrease with the total heating power. The confinement time in the H-mode discharges increases with plasma current approximately linearly.


Nuclear Fusion | 2011

Overview of experimental results on the HL-2A tokamak

L.W. Yan; X.R. Duan; X.T. Ding; J.Q. Dong; Q. W. Yang; Yi Liu; X. Zou; D.Q. Liu; W.M. Xuan; L. Chen; J. Rao; X.M. Song; Y. Huang; W.C. Mao; Q.M. Wang; Q. Z. Li; Z. Cao; B. Li; J.Y. Cao; G.J. Lei; J.H. Zhang; X.D. Li; W. Chen; J. Cheng; C.H. Cui; Zhengying Cui; Z.C. Deng; Y.B. Dong; B.B. Feng; Q.D. Gao

The physics experiments on the HL-2A tokamak have been focused on confinement improvement, particle and thermal transport, zonal flow and turbulence, filament characteristics, energetic particle induced modes and plasma fuelling efficiency since 2008. ELMy H-mode discharges are achieved in a lower density regime using a combination of NBI heating with ECRH. The power threshold is found to increase with a decrease in density, almost independent of the launching order of the ECRH and NBI heating power. The pedestal density profiles in the H-mode discharges are measured. The particle outward convection is observed during the pump-out transient phase with ECRH. The negative density perturbation (pump-out) is observed to propagate much faster than the positive one caused by out-gassing. The core electron thermal transport reduction triggered by far off-axis ECRH switch-off is investigated. The coexistence of low frequency zonal flow (LFZF) and geodesic acoustic mode (GAM) is observed. The dependence of the intensities of LFZFs and GAMs on the safety factor and ECRH power is identified. The 3D spatial structures of plasma filaments are measured in the boundary plasma and large-scale structures along a magnetic field line analysed for the first time. The beta-induced Alfven eigenmodes (BAEs), excited by large magnetic islands (m-BAE) and by energetic electrons (e-BAE), are observed. The results for the study of fuelling efficiency and penetration characteristics of supersonic molecular beam injection (SMBI) are described.


Plasma Physics and Controlled Fusion | 2008

Spectral characteristics of geodesic acoustic mode in the HL-2A tokamak

T. Lan; A.D. Liu; C. X. Yu; L.W. Yan; Wenyu Hong; K.J. Zhao; J.Q. Dong; J. Qian; J. Cheng; D L Yu; Q. W. Yang

The spectral characteristics of the geodesic acoustic mode (GAM) are investigated systematically by applying the two-point correlation technique and bispectral analysis to electric field fluctuations measured by electrostatic probe arrays on the HuanLiuqi-2A (HL-2A) tokamak. The three-dimensional wavenumber and frequency spectrum for the GAM has been measured for the first time. The spectrum provides definite evidence for the GAM which is characterized by kθ = k = 0 and krρi ≈ 0.04–0.09 with the full width at half maximum Δkrρi ≈ 0.03–0.07. The radial wavenumber spectrum shows that the localized GAM packet propagates in the outward direction with approximately the same phase and group velocity. The cross-bicoherences involving the Reynolds stress and auto-bicoherences of potential ( ), radial electric field ( ) and density ( ) fluctuations have been estimated for comparisons. Strong nonlinear coupling between the GAM and broadband turbulence is observed in all summed bicoherences, except for the summed auto-bicoherence of density fluctuations. All cross- and auto-bicoherences, except for the auto-bicoherence of density fluctuations, for interactions satisfying f1 + f2 = fGAM are found to have a peaked feature in the frequency range f1 < 100 kHz. This peaked feature might reflect the resonance property in the nonlinear coupling between the GAM and ambient turbulence.


Plasma Physics and Controlled Fusion | 2010

Turbulence and zonal flows in edge plasmas of the HL-2A tokamak

K.J. Zhao; Jiaqi Dong; L.W. Yan; Wenyu Hong; A. Fujisawa; C. X. Yu; Q. Li; J. Qian; J. Cheng; T. Lan; A.D. Liu; H.L. Zhao; D.F. Kong; Y. Huang; Yi Liu; Xianming Song; Q. W. Yang; X.T. Ding; Xuru Duan; Yong Liu

Measurements with a toroidally and poloidally displaced three-dimensional set of Langmuir probe arrays have revealed details of turbulence, geodesic acoustic modes (GAMs), zonal flows and their interactions in the edge region of HL-2A tokamak plasmas. The coexistence of intensive low frequency zonal flows (LFZFs) of f < 4 kHz and the GAMs of 7 kHz < fGAM < 20 kHz has been unambiguously demonstrated. The poloidal and toroidal symmetries of the flows, including the GAMs, are verified experimentally. In particular, the coherency of the flows over a large toroidal scale of 2100 mm at a magnetic flux surface is emphasized. The LFZF packets are shown to propagate outward and inward as equally likely events, whereas the predominantly outward propagation of the GAM packets is analyzed. The nonlinear three-wave coupling of the flows with ambient turbulence is shown with a bicoherency analysis and an envelope modulation of the latter by the former. The intensity of the LFZFs is observed to increase and decrease with increases in ECRH power (~300–700 kW) and safety factor q ~ (3.5–6.2), respectively, whereas the intensity of the GAMs increases with increases in both ECRH power and q.


Review of Scientific Instruments | 2005

Fast reciprocating probe system on the HL-2A tokamak

L.W. Yan; Wenyu Hong; Jun Qian; Cuiwen Luo; Li Pan

A reciprocating probe system has been installed at the midplane of the HL-2A tokamak. The probe is used to measure plasma edge density, temperature, floating potential, and corresponding fluctuation profiles with 8cm scan from the scrape-off layer to the plasma boundary. The reciprocating probe can move at a speed of 1m∕s. A digital grating displacement measurement system that can provide a high displacement resolution of 0.04mm is applied to the reciprocating probe system for the first time. A port located behind the vacuum isolation valve is designed for viewing and the exchange of the probe head. Different probe heads can be used to satisfy different experimental requirements. The first probe head had four graphite measurement tips. For high frequency response, no isolation amplifier is used in the electric circuit of the probe measurement. A personal computer via an analog-to-digital digitizer card acquires probe system data, which are sent to a data server by optical fiber after a discharge. All data...


Nuclear Fusion | 2013

Observation of energetic-particle-induced GAM and nonlinear interactions between EGAM, BAEs and tearing modes on the HL-2A tokamak

W. Chen; X.T. Ding; L.M. Yu; X.Q. Ji; Zhongbing Shi; Y.P. Zhang; W.L. Zhong; G.L. Yuan; J.Q. Dong; Q. W. Yang; Yi Liu; L.W. Yan; Yan Zhou; M. Jiang; W. Li; X.M. Song; S.Y. Chen; X.R. Duan

In our previous letter, the geodesic acoustic mode (GAM) induced by energetic particles (EGAMs) was reported in low density ohmic plasma on HL-2A (Chen et al 2013 Phys. Lett. A 377 387). We extend the experimental results of the EGAM mode in this paper. During strong tearing modes (TMs), the beta-induced Alfv?n eigenmodes (BAEs) and EGAM-induced density fluctuations are firstly measured by microwave Doppler reflectometers with different work frequencies. As predicted by theory, the measurements of magnetic probes and Doppler reflectometers suggest the EGAM magnetic oscillations have poloidal/toroidal mode numbers of m/n?=?2/0, and are localized in the core with a broad radial structure. The mode frequency is less than that of the conventional GAM (i.e. fEGAM/fGAM?<?1), and is constant in the radial direction. Our experimental results suggest that a density limit exists for the excitation of the EGAM in the ohmic plasma, and the density limit is improved with electron cyclotron resonance heating + neutral beam injection heating on HL-2A. The auto and cross squared bicoherences of magnetic and density fluctuations indicate that intense nonlinear interactions exist among EGAM, BAEs and strong TMs. These new observations will help us to understand the underlying physics mechanism for the excitation of fluctuations in the sub-Alfv?n frequency range.


Nuclear Fusion | 2002

Observation of internal kink instability purely driven by suprathermal electrons in the HL-1M tokamak

X.T. Ding; Yi. Liu; Gancheng Guo; Enyao Wang; K.L. Wong; L.W. Yan; Jiafu Dong; J.Y. Cao; Y. Zhou; J. Rao; Y. Yuan; Hua Xia; Yong Liu

Strong m = 1 MHD activities are observed in the HL-1M tokamak during off-axis electron cyclotron resonance heating (ECRH) when the cyclotron resonance location is placed just outside the q = 1 surface at the high-magnetic-field side of the magnetic surface. Addition of lower-hybrid waves to ECRH significantly enhances the MHD excitation, but lower-hybrid waves alone cannot excite or sustain the mode. This result is a clear demonstration of the suprathermal trapped electron effect on the instability because of the absence of energetic ions in the plasma.

Collaboration


Dive into the L.W. Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K.J. Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

A.D. Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

T. Lan

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

P. H. Diamond

University of California

View shared research outputs
Top Co-Authors

Avatar

C. X. Yu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Y. Zhou

Princeton University

View shared research outputs
Top Co-Authors

Avatar

J. Qian

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge