Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ladina Di Rago is active.

Publication


Featured researches published by Ladina Di Rago.


Journal of Experimental Medicine | 2005

PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis.

Aleksandar Dakic; Donald Metcalf; Ladina Di Rago; Sandra Mifsud; Li-Li Wu; Stephen L. Nutt

Although the transcription factor PU.1 is essential for fetal lymphomyelopoiesis, we unexpectedly found that elimination of the gene in adult mice allowed disturbed hematopoiesis, dominated by granulocyte production. Impaired production of lymphocytes was evident in PU.1-deficient bone marrow (BM), but myelocytes and clonogenic granulocytic progenitors that are responsive to granulocyte colony-stimulating factor or interleukin-3 increased dramatically. No identifiable common lymphoid or myeloid progenitor populations were discernable by flow cytometry; however, clonogenic assays suggested an overall increased frequency of blast colony-forming cells and BM chimeras revealed existence of long-term self-renewing PU.1-deficient cells that required PU.1 for lymphoid, but not granulocyte, generation. PU.1 deletion in granulocyte-macrophage progenitors, but not in common myeloid progenitors, resulted in excess granulocyte production; this suggested specific roles of PU.1 at different stages of myeloid development. These findings emphasize the distinct nature of adult hematopoiesis and reveal that PU.1 regulates the specification of the multipotent lymphoid and myeloid compartments and restrains, rather than promotes, granulopoiesis.


Cell | 2014

RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis

James A Rickard; Joanne A. O’Donnell; Joseph M Evans; Najoua Lalaoui; Ashleigh R. Poh; TeWhiti Rogers; James E. Vince; Kate E. Lawlor; Robert L. Ninnis; Holly Anderton; Cathrine Hall; Sukhdeep Kaur Spall; Toby J. Phesse; Helen E. Abud; Louise H. Cengia; Jason Corbin; Sandra Mifsud; Ladina Di Rago; Donald Metcalf; Matthias Ernst; Grant Dewson; Andrew W. Roberts; Warren S. Alexander; James M. Murphy; Paul G. Ekert; Seth L. Masters; David L. Vaux; Ben A. Croker; Motti Gerlic; John Silke

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppressor of cytokine signaling-1 (SOCS-1)

Donald Metcalf; Sandra Mifsud; Ladina Di Rago; Nicos A. Nicola; Douglas J. Hilton; Warren S. Alexander

Mice with inactivation of the gene encoding the suppressor of cytokine signaling-1 (SOCS-1) die in neonatal life with an IFN-γ-dependent inflammatory disease dominated by fatty degeneration and necrosis of the liver. To establish the long-term pathological consequences of loss of SOCS-1 in mice, where initial survival was made possible by also deleting the IFN-γ gene, a comparison was made of the lifespan of groups of SOCS-1−/− IFN-γ−/−, SOCS-1+/+ IFN-γ−/− and SOCS-1+/+ IFN-γ+/+ mice. Mice lacking the genes for both SOCS-1 and IFN-γ exhibited an accelerated death rate compared with control groups. Disease states developing selectively in SOCS-1−/− IFN-γ−/− mice were polycystic kidneys, pneumonia, chronic skin ulcers, and chronic granulomas in the gut and various other organs. Mice of all three groups developed cataracts, but disease development was accelerated in the groups lacking IFN-γ. SOCS-1−/− IFN-γ−/− mice exhibited a slightly increased predisposition to the development of T lymphoid leukemia, either spontaneous or radiation-induced. The development of polycystic kidneys may be caused by a developmental defect in renal-tubule organization noted in neonatal SOCS-1−/− mice. The chronic infections and granulomas of SOCS-1−/− IFN-γ−/− mice may be based on autoaggression of SOCS-1−/− T lymphoid and related cells or a functional deficiency of these cells when lacking SOCS-1.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia

Donald Metcalf; Aleksandar Dakic; Sandra Mifsud; Ladina Di Rago; Li Wu; Stephen L. Nutt

Genetically primed adult C57BL mice were deleted of exon 5 of the gene encoding the transcription factor PU.1 by IFN activation of Cre recombinase. After a 13-week delay, conditionally deleted (PU.1-/-) mice began dying of myeloid leukemia, and 95% of the mice surviving from early postinduction death developed transplantable myeloid leukemia whose cells were deleted of PU.1 and uniformly Gr-1 positive. The leukemic cells formed autonomous colonies in semisolid culture with varying clonal efficiency, but colony formation was enhanced by IL-3 and sometimes by granulocyte-macrophage colony-stimulating factor. Nine of 13 tumors analyzed had developed a capacity for autocrine IL-3 or granulocyte-macrophage colony-stimulating factor production, and there was evidence of rearrangement of the IL-3 gene. Acquisition of autocrine growth-factor production and autonomous growth appeared to be major events in the transformation of conditionally deleted PU.1-/- cells to fully developed myeloid leukemic populations.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation

Ashley P. Ng; Maria Kauppi; Donald Metcalf; Craig D. Hyland; Emma C. Josefsson; Marion Lebois; Jian-Guo Zhang; Tracey M. Baldwin; Ladina Di Rago; Douglas J. Hilton; Warren S. Alexander

Significance Blood platelets, the small circulating cells that coordinate hemostasis, are produced by specialized bone marrow cells called megakaryocytes. The cytokine thrombopoietin (TPO) is a key regulator of platelet production acting via its specific cell receptor, Mpl. Via genetic modification of the Mpl allele in mice, we precisely define the bone marrow cells that express Mpl and, by genetically removing Mpl from megakaryocytes and platelets, we show TPO signaling via Mpl is not required in megakaryocytes for their expansion, maturation, or platelet production. Rather, Mpl expression on megakaryocytes is essential for regulating TPO availability in the bone marrow microenvironment to prevent myeloproliferation, a model we suggest is important for human disease. Thrombopoietin (TPO) acting via its receptor, the cellular homologue of the myeloproliferative leukemia virus oncogene (Mpl), is the major cytokine regulator of platelet number. To precisely define the role of specific hematopoietic cells in TPO-dependent hematopoiesis, we generated mice that express the Mpl receptor normally on stem/progenitor cells but lack expression on megakaryocytes and platelets (MplPF4cre/PF4cre). MplPF4cre/PF4cre mice displayed profound megakaryocytosis and thrombocytosis with a remarkable expansion of megakaryocyte-committed and multipotential progenitor cells, the latter displaying biological responses and a gene expression signature indicative of chronic TPO overstimulation as the underlying causative mechanism, despite a normal circulating TPO level. Thus, TPO signaling in megakaryocytes is dispensable for platelet production; its key role in control of platelet number is via generation and stimulation of the bipotential megakaryocyte precursors. Nevertheless, Mpl expression on megakaryocytes and platelets is essential to prevent megakaryocytosis and myeloproliferation by restricting the amount of TPO available to stimulate the production of megakaryocytes from the progenitor cell pool.


Blood | 2010

Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome.

Ashley P. Ng; Craig D. Hyland; Donald Metcalf; Catherine L. Carmichael; Stephen J. Loughran; Ladina Di Rago; Benjamin T. Kile; Warren S. Alexander

Down syndrome is characterized by multiple phenotypic manifestations associated with trisomy of chromosome 21. The transient myeloproliferative disorder and acute megakaryocytic leukemia associated with Down syndrome are uniquely associated with mutations in the transcription factor GATA1; however, the identity of trisomic genes on chromosome 21 that predispose to these hematologic disorders remains unknown. Using a loss-of-function allele, we show that specific reduction to functional disomy of the Erg gene corrects the pathologic and hematologic features of myeloproliferation in the Ts(17(16))65Dn mouse model of Down syndrome, including megakaryocytosis and progenitor cell expansion. Our data provide genetic evidence establishing the need for Erg trisomy for myeloproliferation in Ts(17(16))65Dn mice and imply that increased ERG gene dosage may be a key consequence of trisomy 21 that can predispose to malignant hematologic disorders in Down syndrome.


Blood | 2015

Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis.

Stanley Chun-Wei Lee; Sarah E. Miller; Craig D. Hyland; Maria Kauppi; Marion Lebois; Ladina Di Rago; Donald Metcalf; Sarah Kinkel; Emma C. Josefsson; Marnie E. Blewitt; Ian Majewski; Warren S. Alexander

Polycomb repressive complex 2 (PRC2) is a chromatin modifier that regulates stem cells in embryonic and adult tissues. Loss-of-function studies of PRC2 components have been complicated by early embryonic dependence on PRC2 activity and the partial functional redundancy of enhancer of zeste homolog 1 (Ezh1) and enhancer of zeste homolog 2 (Ezh2), which encode the enzymatic component of PRC2. Here, we investigated the role of PRC2 in hematopoiesis by conditional deletion of suppressor of zeste 12 protein homolog (Suz12), a core component of PRC2. Complete loss of Suz12 resulted in failure of hematopoiesis, both in the embryo and the adult, with a loss of maintenance of hematopoietic stem cells (HSCs). In contrast, partial loss of PRC2 enhanced HSC self-renewal. Although Suz12 was required for lymphoid development, deletion in individual blood cell lineages revealed that it was dispensable for the development of granulocytic, monocytic, and megakaryocytic cells. Collectively, these data reveal the multifaceted role of PRC2 in hematopoiesis, with divergent dose-dependent effects in HSC and distinct roles in maturing blood cells. Because PRC2 is a potential target for cancer therapy, the significant consequences of modest changes in PRC2 activity, as well as the cell and developmental stage-specific effects, will need to be carefully considered in any therapeutic context.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The lethal effects of transplantation of Socs1-/- bone marrow cells into irradiated adult syngeneic recipients

Donald Metcalf; Sandra Mifsud; Ladina Di Rago; Warren S. Alexander

Injection of neonatal bone marrow cells from mice lacking the gene encoding suppressor of cytokine signaling 1 (SOCS1) into irradiated syngeneic 129/Sv or C57BL/6 mice led to a decreased survival, more rapidly occurring in 129/Sv than in C57BL/6 mice. Moribund mice did not exhibit the acute or chronic diseases developed by Socs1-/- mice but developed a pathology characteristic of graft-versus-host disease with typical chronic inflammatory lesions in the liver, skin, lungs, and gut. The results indicate that cells derived from the Socs1-/- bone marrow are autoaggressive but did not identify the cell types involved. Failure of the engrafted Socs1-/- marrow cells to reproduce the tissue damage typical of Socs1-/- disease indicates that loss of SOCS1 from target tissues may also be required for the development of the Socs1-/- diseases, such as fatty degeneration of the liver, polymyositis, or corneal inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia

Ian Majewski; Donald Metcalf; Lisa A. Mielke; Danielle L. Krebs; Sarah Ellis; Marina R. Carpinelli; Sandra Mifsud; Ladina Di Rago; Jason Corbin; Nicos A. Nicola; Douglas J. Hilton; Warren S. Alexander

We have generated mice from a N-ethyl-N-nitrosourea mutagenesis screen that carry a mutation in the translation initiation codon of Gata-1, termed Plt13, which is equivalent to mutations found in patients with acute megakaryoblastic leukemia and Down syndrome. The Gata-1 locus is present on the X chromosome in humans and in mice. Male mice hemizygous for the mutation (Gata-1Plt13/Y) failed to produce red blood cells and died during embryogenesis at a similar stage to Gata-1-null animals. Female mice that carry the Plt13 mutation are mosaic because of random inactivation of the X chromosome. Adult Gata-1Plt13/+ females were not anemic, but they were thrombocytopenic and accumulated abnormal megakaryocytes without a concomitant increase in megakaryocyte progenitor cells. Gata-1Plt13/+ mice contained large numbers of blast-like colony-forming cells, particularly in the fetal liver, but also in adult spleen and bone marrow, from which continuous mast cells lines were readily derived. Although the equivalent mutation to Gata-1Plt13 in humans results in production of GATA-1s, a short protein isoform initiated from a start codon downstream of the mutated initiation codon, Gata-1s was not detected in Gata-1Plt13/+ mice.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia

Catherine L. Carmichael; Donald Metcalf; Katya J. Henley; Elizabeth A. Kruse; Ladina Di Rago; Sandra Mifsud; Warren S. Alexander; Benjamin T. Kile

The transcription factor encoded by the E-twenty-six (ETS)-related gene, ERG, is an essential regulator of hematopoietic stem cell function and a potent human oncoprotein. Enforced expression of ERG in murine hematopoietic cells leads to the development of a well-characterized lymphoid leukemia and a less well-defined non lymphoid disease. To clarify the latter, we generated murine bone marrow chimeras with enforced Erg expression in engrafted hematopoietic progenitor cells. As expected, these mice developed lymphoid leukemia. However, the previously reported non lymphoid disease that developed was shown to be a uniform, transplantable leukemia with both erythroid and megakaryocytic characteristics. In vivo, this disease had the overall appearance of an erythroleukemia, with an accumulation of immature erythroblasts that infiltrated the bone marrow, spleen, liver, and lung. However, when stimulated in vitro, leukemic cell clones exhibited both erythroid and megakaryocytic differentiation, suggesting that transformation occurred in a bipotential progenitor. Thus, in mice, Erg overexpression induces the development of not only lymphoid leukemia but also erythro-megakaryocytic leukemia.

Collaboration


Dive into the Ladina Di Rago's collaboration.

Top Co-Authors

Avatar

Donald Metcalf

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sandra Mifsud

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Warren S. Alexander

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ashley P. Ng

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Craig D. Hyland

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin T. Kile

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Catherine L. Carmichael

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Maria Kauppi

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicos A. Nicola

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge