Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ladislav Andera is active.

Publication


Featured researches published by Ladislav Andera.


Molecular Cancer | 2011

BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

Eleni Makrodouli; Eftychia Oikonomou; Michal Koc; Ladislav Andera; Takehiko Sasazuki; Senji Shirasawa; Alexander Pintzas

BackgroundColorectal cancer is a common disease that involves genetic alterations, such as inactivation of tumour suppressor genes and activation of oncogenes. Among them are RAS and BRAF mutations, which rarely coexist in the same tumour. Individual members of the Rho (Ras homology) GTPases contribute with distinct roles in tumour cell morphology, invasion and metastasis. The aim of this study is to dissect cell migration and invasion pathways that are utilised by BRAFV600Eas compared to KRASG12V and HRASG12V oncoproteins. In particular, the role of RhoA (Ras homolog gene family, member A), Rac1 (Ras-related C3 botulinum toxin substrate 1) and Cdc42 (cell division cycle 42) in cancer progression induced by each of the three oncogenes is described.MethodsColon adenocarcinoma cells with endogenous as well as ectopically expressed or silenced oncogenic mutations of BRAFV600E, KRASG12V and HRASG12V were employed. Signalling pathways and Rho GTPases were inhibited with specific kinase inhibitors and siRNAs. Cell motility and invasion properties were correlated with cytoskeletal properties and Rho GTPase activities.ResultsEvidence presented here indicate that BRAFV600E significantly induces cell migration and invasion properties in vitro in colon cancer cells, at least in part through activation of RhoA GTPase. The relationship established between BRAFV600E and RhoA activation is mediated by the MEK-ERK pathway. In parallel, KRASG12V enhances the ability of colon adenocarcinoma cells Caco-2 to migrate and invade through filopodia formation and PI3K-dependent Cdc42 activation. Ultimately increased cell migration and invasion, mediated by Rac1, along with the mesenchymal morphology obtained through the Epithelial-Mesenchymal Transition (EMT) were the main characteristics rendered by HRASG12V in Caco-2 cells. Moreover, BRAF and KRAS oncogenes are shown to cooperate with the TGFβ-1 pathway to provide cells with additional transforming properties.ConclusionThis study discriminates oncogene-specific cell migration and invasion pathways mediated by Rho GTPases in colon cancer cells and reveals potential new oncogene-specific characteristics for targeted therapeutics.


FEBS Letters | 2001

Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection

Renata Alleva; Marco Tomasetti; Ladislav Andera; Nina Gellert; Battista Borghi; Christian Weber; Michael P. Murphy; Jiri Neuzil

Generation of free radicals is often associated with the induction and progression of apoptosis. Therefore, antioxidants can prove anti‐apoptotic, and can help to elucidate specific apoptotic pathways. Here we studied whether coenzyme Q, present in membranes in reduced (ubiquinol) or oxidised (ubiquinone) forms, can affect apoptosis induced by various stimuli. Exposure of Jurkat cells to α‐tocopheryl succinate (α‐TOS), hydrogen peroxide, anti‐Fas IgM or TRAIL led to induction of apoptosis. Cell death due to the chemical agents was suppressed in cells enriched with the reduced form of coenzyme Q. However, coenzyme Q did not block cell death induced by the immunological agents. Ubiquinol‐10 inhibited reactive oxygen species (ROS) generation in cells exposed to α‐TOS, and a mitochondrially targeted coenzyme Q analogue also blocked apoptosis triggered by α‐TOS or hydrogen peroxide. Therefore, it is plausible that ubiquinol‐10 protects cells from chemically‐induced apoptosis by acting as an antioxidant in mitochondria. Our results also indicate that generation of free radicals may not be a critical step in induction of apoptosis by immunological agents.


Apoptosis | 2002

Vitamin E analogs: A new class of multiple action agents with anti-neoplastic and anti-atherogenic activity

Jiri Neuzil; Katarina Kågedal; Ladislav Andera; Christian Weber; Ulf T. Brunk

The incidence of cancer and atherosclerosis, two most common causes of death in developed countries, has been stagnating or, even, increasing. Drugs effective against such conditions are needed and, in this regard, the potential anti-atherosclerotic activity of vitamin E analogs has been studied extensively. Surprisingly, recent results indicate that these agents may also exert anti-neoplastic effects. Here we review the evidence that particular analogs of vitamin E may act as both antiatherogenic and anti-cancer agents, and discuss the possible molecular bases for these actions.


FEBS Letters | 2006

α-Tocopheryl succinate induces DR4 and DR5 expression by a p53-dependent route: Implication for sensitisation of resistant cancer cells to TRAIL apoptosis

Marco Tomasetti; Ladislav Andera; Renata Alleva; Battista Borghi; Jiri Neuzil; Antonio Procopio

We evaluated the ability of α‐tocopheryl succinate (α‐TOS) to sensitise TRAIL‐resistant malignant mesothelioma (MM) cells to TRAIL‐induced apoptosis. We show that α‐TOS activates expression of DR4/DR5 in a p53‐dependent manner and re‐establishes sensitivity of resistant MM cells to TRAIL‐mediated apoptosis, as documented in p53wt MM cells but not in their p53null counterparts. MM cells selected for TRAIL resistance expressed low cell surface levels of DR4 and DR5. Treatment with sub‐lethal doses of α‐TOS restored expression of DR4 and DR5. The ability of α‐TOS to modulate expression of pro‐apoptotic genes may play a role in sensitisation of tumour cells to immunological stimuli.


British Journal of Cancer | 2004

α-Tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells

Marco Tomasetti; M R Rippo; Renata Alleva; S Moretti; Ladislav Andera; Jiri Neuzil; Antonio Procopio

Malignant mesothelioma (MM) is a fatal type of neoplasia with poor therapeutic prognosis, largely due to resistance to apoptosis. We investigated the apoptotic effect of α-tocopheryl succinate (α-TOS), a strong proapoptotic agent, in combination with the immunological apoptogen TNF-related apoptosis-inducing ligand (TRAIL) on both MM and nonmalignant mesothelial cells, since MM cells show low susceptibility to the clinically intriguing TRAIL. All MM cell lines tested were sensitive to α-TOS-induced apoptosis, and exerted high sensitivity to TRAIL in the presence of subapoptotic doses of the vitamin E analogue. Neither TRAIL or α-TOS alone or in combination caused apoptosis in nonmalignant mesothelial cells. Isobologram analysis of the cytotoxicity assays revealed a synergistic interaction between the two agents in MM cells and their antagonistic effect in nonmalignant mesothelial cells. TRAIL-induced apoptosis and its augmentation by α-TOS were inhibited by the caspase-8 inhibitor Z-IETD-FMK and the pan-caspase inhibitor Z-VAD-FMK. Activation of caspase-8 was required to induce apoptosis, which was amplified by α-TOS via cytochrome c release following Bid cleavage, with ensuing activation of caspase-9. Enhancement of TRAIL-induced apoptosis in MM cells by α-TOS was also associated with upregulation of the TRAIL cognate death receptors DR4 and DR5. Our results show that α-TOS and TRAIL act in synergism to kill MM cells via mitochondrial pathway, and are nontoxic to nonmalignant mesothelial cells. These findings are indicative of a novel strategy for treatment of thus far fatal MM.


eLife | 2017

Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells

Lan-Feng Dong; Jaromira Kovarova; Martina Bajzikova; Ayenachew Bezawork-Geleta; David Svec; Berwini Endaya; Karishma Sachaphibulkij; Ana Coelho; Natasa Sebkova; Anna Ruzickova; An S. Tan; Katarina Kluckova; Kristyna Judasova; Katerina Zamecnikova; Zuzana Rychtarcikova; Vinod Gopalan; Ladislav Andera; Margarita Sobol; Bing Yan; Bijay Pattnaik; Naveen K. Bhatraju; Jaroslav Truksa; Pavel Stopka; Pavel Hozák; Alfred King-Yin Lam; Radislav Sedlacek; Paulo J. Oliveira; Mikael Kubista; Anurag Agrawal; Katerina Dvorakova-Hortova

Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI: http://dx.doi.org/10.7554/eLife.22187.001


PLOS ONE | 2011

Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance

Eftychia Oikonomou; Michal Koc; Vladimira Sourkova; Ladislav Andera; Alexander Pintzas

Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.


Molecular and Cellular Biochemistry | 2013

Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins

So Jung Park; Dong Hyung Cho; Ladislav Andera; Nayoung Suh; Inki Kim

The TNF-related apoptosis inducing ligand (TRAIL) has promising anti-cancer therapeutic activity, although significant percentage of primary tumors resistant to TRAIL-induced apoptosis remains an obstacle to the extensive use of TRAIL-based mono-therapies. Natural compound curcumin could potentially sensitize resistant cancer cells to TRAIL. We found that the combination of TRAIL with curcumin can synergistically induces apoptosis in three TRAIL-resistant breast cancer cell lines. The mechanism behind this synergistic cell death was investigated by examining an effect of curcumin on the expression and activation of TRAIL-associated cell death proteins. Immunoblotting, RNA interference, and use of chemical inhibitors of TRAIL-activate signaling revealed differential effects of curcumin on the expression of Mcl-1 and activities of ERK and Akt. Curcumin-induced production of reactive oxygen species did not affect total expression of DR5 but it enhanced mobilization of DR5 to the plasma membrane. In these breast cancer cells curcumin also induced downregulation of IAP proteins. Taken together, our data suggest that a combination of TRAIL and curcumin is a potentially promising treatment for breast cancer, although the specific mechanisms involved in this sensitization could differ even among breast cancer cells of different origins.


Clinical Cancer Research | 2016

Targeting of BCL2 Family Proteins with ABT-199 and Homoharringtonine Reveals BCL2- and MCL1-Dependent Subgroups of Diffuse Large B-Cell Lymphoma

Magdalena Klanova; Ladislav Andera; Simona Benesova; Jan Soukup; Dana Prukova; Dana Vejmelkova; Radek Jaksa; Karel Helman; Petra Vockova; Lucie Lateckova; Jan Molinsky; Bokang Maswabi; Mahmudul Alam; Roman Kodet; Robert Pytlik; Marek Trneny; Pavel Klener

Purpose: To investigate the roles of BCL2, MCL1, and BCL-XL in the survival of diffuse large B-cell lymphoma (DLBCL). Experimental designs: Immunohistochemical analysis of 105 primary DLBCL samples, and Western blot analysis of 18 DLBCL cell lines for the expression of BCL2, MCL1, and BCL-XL. Pharmacologic targeting of BCL2, MCL1, and BCL-XL with ABT-199, homoharringtonine (HHT), and ABT-737. Analysis of DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL. Immunoprecipitation of MCL1 complexes in selected DLBCL cell lines. Experimental therapy aimed at inhibition of BCL2 and MCL1 using ABT-199 and HHT, single agent, or in combination, in vitro and in vivo on primary cell-based murine xenograft models of DLBCL. Results: By the pharmacologic targeting of BCL2, MCL1, and BCL-XL, we demonstrated that DLBCL can be divided into BCL2-dependent and MCL1-dependent subgroups with a less pronounced role left for BCL-XL. Derived DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL, as well as the immunoprecipitation experiments, which analyzed MCL1 protein complexes, confirmed these findings at the molecular level. We demonstrated that concurrent inhibition of BCL2 and MCL1 with ABT-199 and HHT induced significant synthetic lethality in most BCL2-expressing DLBCL cell lines. The marked cytotoxic synergy between ABT-199 and HHT was also confirmed in vivo using primary cell-based murine xenograft models of DLBCL. Conclusions: As homoharringtonine is a clinically approved antileukemia drug, and ABT-199 is in advanced phases of diverse clinical trials, our data might have direct implications for novel concepts of early clinical trials in patients with aggressive DLBCL. Clin Cancer Res; 22(5); 1138–49. ©2015 AACR.


Oncology Reports | 2014

Emetine enhances the tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of pancreatic cancer cells by downregulation of myeloid cell leukemia sequence-1 protein

Yujeong Han; So Jung Park; Ann W. Kinyua; Ladislav Andera; Ki Woo Kim; Inki Kim

Although the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent, it shows limited efficacy in human pancreatic cancer cells. Protein synthesis inhibition has been reported to sensitize cancer cells to apoptosis-inducing agents, but the detailed mechanism by which protein synthesis inhibition sensitize cells to TRAIL has not been determined. To investigate the mechanism underlying pancreatic cancer cell resistance to TRAIL, we performed a small scale high-throughput compound screening in AsPC-1 pancreatic cancer cells using a bioactive small molecule library. We identified 8 compounds that reproducibly sensitize AsPC-1 cells to TRAIL-induced apoptosis. One of these compounds, emetine hydrochloride, when combined with subtoxic concentrations of TRAIL, induced massive apoptosis in AsPC-1 and BxPC-3 pancreatic cancer cells. Cell death analysis revealed that the sensitizing effects of emetine were specific to TRAIL. Emetine downregulated the expression of the TRAIL-related anti-apoptotic protein Mcl-1 in a dose- and time-dependent manner. Furthermore, specific knockdown of Mcl-1 using small interfering RNA without emetine treatment sensitized pancreatic cancer cells to TRAIL. Emetine sensitization of pancreatic cancer cells to TRAIL via Mcl-1 was confirmed under hypoxic conditions. Taken together, these findings strongly suggest that Mcl-1 is involved in pancreatic cancer cell resistance to TRAIL, and emetine facilitates the apoptosis of TRAIL-tolerant pancreatic cancer cells by specifically inhibiting Mcl-1 function.

Collaboration


Dive into the Ladislav Andera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel Klener

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Molinsky

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michal Koc

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuel Necas

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Zivny

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Marek Trneny

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Zdenek Hodny

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge