Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laerte Guimarães Ferreira is active.

Publication


Featured researches published by Laerte Guimarães Ferreira.


Remote Sensing of Environment | 2002

Overview of the radiometric and biophysical performance of the MODIS vegetation indices

Alfredo R. Huete; Kamel Didan; Tomoaki Miura; Edna Rodriguez; Xiang Gao; Laerte Guimarães Ferreira

Abstract We evaluated the initial 12 months of vegetation index product availability from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Earth Observing System-Terra platform. Two MODIS vegetation indices (VI), the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), are produced at 1-km and 500-m resolutions and 16-day compositing periods. This paper presents an initial analysis of the MODIS NDVI and EVI performance from both radiometric and biophysical perspectives. We utilize a combination of site-intensive and regionally extensive approaches to demonstrate the performance and validity of the two indices. Our results showed a good correspondence between airborne-measured, top-of-canopy reflectances and VI values with those from the MODIS sensor at four intensively measured test sites representing semi-arid grass/shrub, savanna, and tropical forest biomes. Simultaneously derived field biophysical measures also demonstrated the scientific utility of the MODIS VI. Multitemporal profiles of the MODIS VIs over numerous biome types in North and South America well represented their seasonal phenologies. Comparisons of the MODIS-NDVI with the NOAA-14, 1-km AVHRR-NDVI temporal profiles showed that the MODIS-based index performed with higher fidelity. The dynamic range of the MODIS VIs are presented and their sensitivities in discriminating vegetation differences are evaluated in sparse and dense vegetation areas. We found the NDVI to asymptotically saturate in high biomass regions such as in the Amazon while the EVI remained sensitive to canopy variations.


Environmental Monitoring and Assessment | 2010

Land cover mapping of the tropical savanna region in Brazil

Edson Eyji Sano; Roberto Rosa; Jorge Luis Silva Brito; Laerte Guimarães Ferreira

The Brazilian tropical savanna (Cerrado), encompassing more than 204 million hectares in the central part of the country, is the second richest biome in Brazil in terms of biodiversity and presents high land use pressure. The objective of this study was to map the land cover of the Cerrado biome based on the segmentation and visual interpretation of 170 Landsat Enhanced Thematic Mapper Plus satellite scenes acquired in 2002. The following land cover classes were discriminated: grasslands, shrublands, forestlands, croplands, pasturelands, reforestations, urban areas, and mining areas. The results showed that the remnant natural vegetation is still covering about 61% of the biome, however, on a highly asymmetrical basis. While natural physiognomies comprise 90% of the northern part of the biome, only 15% are left in its southern portions. Shrublands were the dominant natural land cover class, while pasturelands were the dominant land use class in the Cerrado biome. The final Cerrado’s land cover map confirmed the intensive land use pressure in this unique biome. This paper also showed that Landsat-like sensors can provide feasible land cover maps of Cerrado, although ancillary data are required to help image interpretation.


Pesquisa Agropecuaria Brasileira | 2008

Mapeamento semidetalhado do uso da terra do Bioma Cerrado

Edson Eyji Sano; Roberto Rosa; Jorge Luis Silva Brito; Laerte Guimarães Ferreira

O objetivo deste trabalho foi mapear o uso da terra do Bioma Cerrado na escala de 1:250.000. As seguintes classes de uso da terra foram consideradas: culturas agricolas, pastagens cultivadas, reflorestamentos, areas urbanas e areas de mineracao. A metodologia envolveu a segmentacao de imagens do satelite Landsat, a classificacao visual dos segmentos e a analise da exatidao global do mapa final. Aproximadamente 39,5% do Cerrado apresentaram algum tipo de uso de terra. Pastagens cultivadas e culturas agricolas foram as classes predominantes, com 26,5 e 10,5%, respectivamente.


International Journal of Remote Sensing | 2004

Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices

Laerte Guimarães Ferreira; Alfredo R. Huete

In this study, the response of vegetation indices (VIs) to the seasonal patterns and spatial distribution of the major vegetation types encountered in the Brazilian Cerrado was investigated. The Cerrado represents the second largest biome in South America and is the most severely threatened biome as a result of rapid land conversions. Our goal was to assess the capability of VIs to effectively monitor the Cerrado and to discriminate among the major types of Cerrado vegetation. A full hydrologic year (1995) of composited AVHRR, local area coverage (LAC) data was converted to Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) values. Temporal extracts were then made over the major Cerrado vegetation communities. Both the NDVI and SAVI temporal profiles corresponded well to the phenological patterns of the natural and converted vegetation formations and depicted three major categories encompassing the savanna formations and pasture sites, the forested areas, and the agricultural crops. Secondary differences in the NDVI and SAVI temporal responses were found to be related to their unique interactions with sun-sensor viewing geometries. An assessment of the functional behaviour of the VIs confirmed SAVI responds primarily to NIR variations, while the NDVI showed a strong dependence on the red reflectance. Based on these results, we expect operational use of the MODIS Enhanced Vegetation Index (EVI) to provide improved discrimination and monitoring capability of the significant Cerrado vegetation types.


Journal of remote sensing | 2007

Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna

Edson Eyji Sano; Laerte Guimarães Ferreira; Gregory P. Asner; E. T. Steinke

Remotely sensed data are the best and perhaps the only possible way for monitoring large‐scale, human‐induced land occupation and biosphere‐atmosphere processes in regions such as the Brazilian tropical savanna (Cerrado). Landsat imagery has been intensively employed for these studies because of their long‐term data coverage (>30 years), suitable spatial and temporal resolutions, and ability to discriminate different land‐use and land‐cover classes. However, cloud cover is the most obvious constraint for obtaining optical remote sensing data in tropical regions, and cloud cover analysis of remotely sensed data is a requisite step needed for any optical remote sensing studies. This study addresses the extent to which cloudiness can restrict the monitoring of the Brazilian Cerrado from Landsat‐like sensors. Percent cloud cover from more than 35 500 Landsat quick‐looks were estimated by the K‐means unsupervised classification technique. The data were examined by month, season, and El Niño Southern Oscillation event. Monthly observations of any part of the biome are highly unlikely during the wet season (October–March), but very possible during the dry season, especially in July and August. Research involving seasonality is feasible in some parts of the Cerrado at the temporal satellite sampling frequency of Landsat sensors. There are several limitations at the northern limit of the Cerrado, especially in the transitional area with the Amazon. During the 1997 El Niño event, the cloudiness over the Cerrado decreased to a measurable but small degree (5% less, on average). These results set the framework and limitations of future studies of land use/land cover and ecological dynamics using Landsat‐like satellite sensors.


Climatic Change | 2012

Estimating greenhouse gas emissions from cattle raising in Brazil

Mercedes M. C. Bustamante; Carlos A. Nobre; Roberto Smeraldi; Ana Paula Dutra Aguiar; L. G. Barioni; Laerte Guimarães Ferreira; Karla Longo; Peter May; Alexandre de Siqueira Pinto; Jean Pierre Henry Balbaud Ometto

The study estimated, for the first time, the greenhouse gas emissions associated with cattle raising in Brazil, focusing on the period from 2003 to 2008 and the three principal sources: 1) portion of deforestation resulting in pasture establishment and subsequent burning of felled vegetation; 2) pasture burning; and 3) bovine enteric fermentation. Deforestation for pasture establishment was only considered for the Amazon and Cerrado. Emissions from pasture burning and enteric fermentation were accounted for the entire country. The consolidated emissions estimate lies between approximately 813 Mt CO2eq in 2008 (smallest value) and approximately 1,090 Mt CO2eq in 2003 (greatest value). The total emissions associated with Amazon cattle ranching ranged from 499 to 775 Mt CO2eq, that of the Cerrado from 229 to 231 Mt CO2eq, and that of the rest of the country between 84 and 87 Mt CO2eq. The full set of emissions originating from cattle raising is responsible for approximately half of all Brazilian emissions (estimated to be approximately 1,055 Mt CO2eq in 2005), even without considering cattle related sources not explicitly estimated in this study, such as energy use for transport and refrigeration along the beef and derivatives supply chain. The potential for reduction of greenhouse gas emissions offered by the Brazilian cattle industry is very high and might constitute Brazil’s most important opportunity for emissions mitigation. The study offers a series of policy recommendations for mitigation that can be implemented by public and private administrators at a low cost relative to other greenhouse gas reduction options.


Earth Interactions | 2005

Analysis of Cerrado Physiognomies and Conversion in the MODIS Seasonal–Temporal Domain

Piyachat Ratana; Alfredo R. Huete; Laerte Guimarães Ferreira

Abstract The “cerrado” biome in central Brazil is rapidly being converted into pasture and agricultural crops with important consequences for local and regional climate change and regional carbon fluxes between the atmosphere and land surface. Satellite remote sensing provides an opportunity to monitor the highly diverse and complex cerrado biome, encompassing grassland, shrubland, woodland and gallery forests, and converted areas. In this study, the potential of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data is analyzed to discriminate among these diverse cerrado physiognomies and converted pastures based on their seasonal dynamics and phenology. Four years (2000–03) of MODIS 16-day composited, 250-m resolution vegetation index (VI) data were extracted over a series of biophysically sampled field study sites representing the major cerrado types. The temporal VI profiles over the cerrado formations exhibited high seasonal contrasts with a pronounced dry season from June to August and a w...


Global Change Biology | 2016

Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz E. O. C. Aragão; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Q. Chambers; Marcos Heil Costa; Thierry Fanin; Laerte Guimarães Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas C. Morton; Jean Pierre Henry Balbaud Ometto; Michael Palace; Carlos A. Peres; Divino Vicente Silvério; Susan E. Trumbore; Ima Célia Guimarães Vieira

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.


Journal of remote sensing | 2007

An operational deforestation mapping system using MODIS data and spatial context analysis

Nilson Clementino Ferreira; Laerte Guimarães Ferreira; Alfredo R. Huete; M. E. Ferreira

The Brazilian Amazon has the worlds highest absolute rate of forest loss, currently averaging nearly 2 million hectares per year. In this study, we present a near‐real‐time automated deforestation mapping system for the Brazilian Amazon based on the analysis of spatial context information and MODIS Vegetation Index products and implemented on an ArcGIS 9.0 platform. This system, already validated and operational, was developed as part of the “Integrated Warning Deforestation System for the Amazon” (SIAD), an initiative of the Brazilian government within the scope of the Amazon Protection System (SIPAM), which also comprises: (1) a spatial information module, aimed at the assessment of the causes and impacts of the deforested areas; (2) a prediction module, indicative of deforestation trends; and (3) a data and information gateway based on map server technology.


Journal of Arid Environments | 2004

Optical characterization of the Brazilian Savanna physiognomies for improved land cover monitoring of the cerrado biome: preliminary assessments from an airborne campaign over an LBA core site

Laerte Guimarães Ferreira; Hirotoshi Yoshioka; Alfredo R. Huete; E.E. Sano

Abstract It is estimated that approximately 40% of the Cerrado, the second largest biome in South America, have been already converted. In this study, situated within the scope of the Large Scale Biosphere-Atmosphere Experiment in Amazonia project (LBA), we conducted a wet season ground and airborne campaign over the Brasilia National Park (BNP), the largest LBA core site in the Cerrado biome, to measure the optical and biophysical properties of the major Cerrado land cover types. We investigated land cover discrimination through the analyses of fine resolution spectra, convolved spectra (MODIS bandpasses), and vegetation indices—the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). At these three data levels, three major physiognomic domains (herbaceous, woody, and forested) could be readily identified, and the amount of data correctly classified into the five major land cover types found at BNP were 91% (full spectra), 78% (red and NIR), 75% (NDVI), and 71% (EVI). A synergism between the NDVI and EVI was also evident, and together, these two indices were capable of correctly classifying 82% of the total data set. Our results indicate the possibility of utilizing the MODIS NDVI and EVI images for operational land cover assessments in the Cerrado region.

Collaboration


Dive into the Laerte Guimarães Ferreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Eduardo Ferreira

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Edson Eyji Sano

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arielle Elias Arantes

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Fábio Carneiro Lobo

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noely Vicente Ribeiro

Universidade Federal de Goiás

View shared research outputs
Researchain Logo
Decentralizing Knowledge