Laetitia Davidovic
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laetitia Davidovic.
Genome Biology | 2003
Eugene V. Koonin; Kira S. Makarova; Igor B. Rogozin; Laetitia Davidovic; Marie-Claude Letellier; Luca Pellegrini
BackgroundThe rhomboid family of polytopic membrane proteins shows a level of evolutionary conservation unique among membrane proteins. They are present in nearly all the sequenced genomes of archaea, bacteria and eukaryotes, with the exception of several species with small genomes. On the basis of experimental studies with the developmental regulator rhomboid from Drosophila and the AarA protein from the bacterium Providencia stuartii, the rhomboids are thought to be intramembrane serine proteases whose signaling function is conserved in eukaryotes and prokaryotes.ResultsPhylogenetic tree analysis carried out using several independent methods for tree constructions and the corresponding statistical tests suggests that, despite its broad distribution in all three superkingdoms, the rhomboid family was not present in the last universal common ancestor of extant life forms. Instead, we propose that rhomboids evolved in bacteria and have been acquired by archaea and eukaryotes through several independent horizontal gene transfers. In eukaryotes, two distinct, ancient acquisitions apparently gave rise to the two major subfamilies, typified by rhomboid and PARL (presenilins-associated rhomboid-like protein), respectively. Subsequent evolution of the rhomboid family in eukaryotes proceeded by multiple duplications and functional diversification through the addition of extra transmembrane helices and other domains in different orientations relative to the conserved core that harbors the protease activity.ConclusionsAlthough the near-universal presence of the rhomboid family in bacteria, archaea and eukaryotes appears to suggest that this protein is part of the heritage of the last universal common ancestor, phylogenetic tree analysis indicates a likely bacterial origin with subsequent dissemination by horizontal gene transfer. This emphasizes the importance of explicit phylogenetic analysis for the reconstruction of ancestral life forms. A hypothetical scenario for the origin of intracellular membrane proteases from membrane transporters is proposed.
PLOS Biology | 2009
Elias Bechara; Marie Cecile Didiot; Mireille Melko; Laetitia Davidovic; Mounia Bensaid; Patrick Martin; Marie Castets; Philippe Pognonec; Edouard W. Khandjian; Hervé Moine; Barbara Bardoni
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the “kissing complex,” which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.
BioMed Research International | 2006
Isabelle Plante; Laetitia Davidovic; Dominique L. Ouellet; Lise-Andrée Gobeil; Sandra Tremblay; Edouard W. Khandjian; Patrick Provost
In mammalian cells, fragile X mental retardation protein (FMRP) has been reported to be part of a microRNA (miRNA)-containing effector ribonucleoprotien (RNP) complex believed to mediate translational control of specific mRNAs. Here, using recombinant proteins, we demonstrate that human FMRP can act as a miRNA acceptor protein for the ribonuclease Dicer and facilitate the assembly of miRNAs on specific target RNA sequences. The miRNA assembler property of FMRP was abrogated upon deletion of its single-stranded (ss) RNA binding K-homology domains. The requirement of FMRP for efficient RNA interference (RNAi) in vivo was unveiled by reporter gene silencing assays using various small RNA inducers, which also supports its involvement in an ss small interfering RNA (siRNA)-containing RNP (siRNP) effector complex in mammalian cells. Our results define a possible role for FMRP in RNA silencing and may provide further insight into the molecular defects in patients with the fragile X syndrome.
Expert Reviews in Molecular Medicine | 2006
Barbara Bardoni; Laetitia Davidovic; Mounia Bensaid; Edouard W. Khandjian
Fragile X syndrome (FXS) - the leading cause of inherited mental retardation - is an X-linked disease caused by loss of expression of the FMR1 (fragile X mental retardation 1) gene. In addition to impairment of higher-cognitive functions, FXS patients show a variety of physical and other mental abnormalities. FMRP, the protein encoded by the FMR1 gene, is thought to play a key role in translation, trafficking and targeting of mRNA in neurons. To better understand FMRPs functions, the protein partners and mRNA targets that interact with FMRP have been sought. These and functional studies have revealed links with processes such as cytoskeleton remodelling via the RhoGTPase pathway and mRNA processing via the RNA interference pathway. In this review, we focus on recent insights into the function of FMRP and speculate on how the absence of FMRP might cause the clinical phenotypes seen in FXS patients. Finally, we explore potential therapies for FXS.
Nucleic Acids Research | 2009
Mounia Bensaid; Mireille Melko; Elias Bechara; Laetitia Davidovic; Antonio Berretta; Maria Vincenza Catania; Jozef Gecz; Enzo Lalli; Barbara Bardoni
FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure.
Journal of Medical Genetics | 2008
Laetitia Davidovic; Sabrina Sacconi; Elias Bechara; Severine Delplace; Marilyn Allegra; Claude Desnuelle; Barbara Bardoni
Background: The Fragile X Mental retardation-Related 1 (FXR1) gene belongs to the fragile X related family, that also includes the Fragile X Mental Retardation (FMR1) gene involved in fragile X syndrome, the most common form of inherited mental retardation. While the absence of FMRP impairs cognitive functions, inactivation of FXR1 has been reported to have drastic effects in mouse and xenopus myogenesis. Seven alternatively spliced FXR1 mRNA variants have been identified, three of them being muscle specific. Interestingly, they encode FXR1P isoforms displaying selective RNA binding properties. Methods and results: Since facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy characterised by altered splicing of mRNAs encoding muscle specific proteins, we have studied the splicing pattern of FXR1 mRNA in myoblasts and myotubes of FSHD patients. We show here that FSHD myoblasts display an abnormal pattern of expression of FXR1P isoforms. Moreover, we provide evidence that this altered pattern of expression is due to a specific reduced stability of muscle specific FXR1 mRNA variants, leading to a reduced expression of FXR1P muscle specific isoforms. Conclusion: Our data suggest that the molecular basis of FSHD not only involves splicing alterations, as previously proposed, but may also involve a deregulation of mRNA stability. In addition, since FXR1P is an RNA binding protein likely to regulate the metabolism of muscle specific mRNAs during myogenesis, its altered expression in FSHD myoblasts may contribute to the physiopathology of this disease.
Nucleic Acids Research | 2006
Elias Bechara; Laetitia Davidovic; Mireille Melko; Mounia Bensaid; Sandra Tremblay; Josiane Grosgeorge; Edouard W. Khandjian; Enzo Lalli; Barbara Bardoni
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.
PLOS Genetics | 2013
Laetitia Davidovic; Nelly Durand; Olfa Khalfallah; Ricardo Tabet; Pascal Barbry; Bernard Mari; Sabrina Sacconi; Hervé Moine; Barbara Bardoni
The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific. A reduction of these isoforms is found in myoblasts from Facio-Scapulo Humeral Dystrophy (FSHD) patients. FXR1P is an RNA–binding protein involved in translational control; however, so far, no mRNA target of FXR1P has been linked to the drastic muscular phenotypes caused by its absence. In this study, gene expression profiling of C2C12 myoblasts reveals that transcripts involved in cell cycle and muscular development pathways are modulated by Fxr1-depletion. We observed an increase of p21—a regulator of cell-cycle progression—in Fxr1-knocked-down mouse C2C12 and FSHD human myoblasts. Rescue of this molecular phenotype is possible by re-expressing human FXR1P in Fxr1-depleted C2C12 cells. FXR1P muscle-specific isoforms bind p21 mRNA via direct interaction with a conserved G-quadruplex located in its 3′ untranslated region. The FXR1P/G-quadruplex complex reduces the half-life of p21 mRNA. In the absence of FXR1P, the upregulation of p21 mRNA determines the elevated level of its protein product that affects cell-cycle progression inducing a premature cell-cycle exit and generating a pool of cells blocked at G0. Our study describes a novel role of FXR1P that has crucial implications for the understanding of its role during myogenesis and muscle development, since we show here that in its absence a reduced number of myoblasts will be available for muscle formation/regeneration, shedding new light into the pathophysiology of FSHD.
RNA Biology | 2005
Laetitia Davidovic; Marc-Étienne Huot; Edouard W. Khandjian
The Fragile X Mental Retardation protein (FMRP) is an RNA-binding protein and its absence leads to the Fragile X syndrome, the most common form of inherited mental retardation. Because it has been acknowledged for a long time that FMRP is associated with polyribosomal mRNPs in all non-neuronal cellular systems studied so far, it is thought that it regulates translation in neurons also; however, its exact function remains elusive. Recently, it has been reported that, contrary to non-neuronal cells, brain FMRP is not associated with the translation machinery, but is part of repressed small RNP complexes excluded from polyribosomes.27 To elucidate this puzzling result, Stefani et al.17 and Khandjian et al.32 have optimized methods to analyze brain polyribosomes and now provide definitive evidence for the association of FMRP with brain polyribosomes. In addition, the data presented in these two reports clearly indicate that FMRP’s function resides at the translation control level.
Journal of Proteome Research | 2014
Katarina Matic; Timo Eninger; Barbara Bardoni; Laetitia Davidovic; Boris Macek
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.