Laetitia Devy
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laetitia Devy.
Oncogene | 2002
Christophe Deroanne; Karine Bonjean; Sandrine Servotte; Laetitia Devy; Alain Colige; Nathalie Clausse; Sylvia Blacher; Eric Verdin; Jean-Michel Foidart; Betty Nusgens; Vincent Castronovo
Angiogenesis is a complex biological process involving the coordinated modulation of many genes. Histone deacetylases (HDAC) are a growing family of enzymes that mediate the availability of chromatin to the transcriptional machinery. Trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA), two HDAC inhibitors known to relieve gene silencing, were evaluated as potential antiangiogenic agents. TSA and SAHA were shown to prevent vascular endothelial growth factor (VEGF)-stimulated human umbilical cord endothelial cells (HUVEC) from invading a type I collagen gel and forming capillary-like structures. SAHA and TSA inhibited the VEGF-induced formation of a CD31-positive capillary-like network in embryoid bodies and inhibited the VEGF-induced angiogenesis in the CAM assay. TSA also prevented, in a dose-response relationship, the sprouting of capillaries from rat aortic rings. TSA inhibited in a dose-dependent and reversible fashion the VEGF-induced expression of VEGF receptors, VEGFR1, VEGFR2, and neuropilin-1. TSA and SAHA upregulated the expression by HUVEC of semaphorin III, a recently described VEGF competitor, at both mRNA and protein levels. This effect was specific to endothelial cells and was not observed in human fibroblasts neither in vascular smooth muscle cells. These observations provide a conspicuous demonstration that HDAC inhibitors are potent anti-angiogenic factors altering VEGF signaling.
The FASEB Journal | 2002
Nor Eddine Sounni; Laetitia Devy; Amin Hajitou; Francis Frankenne; Carine Munaut; Christine Gilles; Christophe Deroanne; Erik W. Thompson; Jean-Michel Foidart; Agnès Noël
Membrane type 1 metalloprotease (MT1‐MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro‐MMP 2. We investigated the effects of MT1‐MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1‐MMP or MMP‐2. MT1‐MMP and MMP‐2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1‐MMP 1) were able to activate endogenous or exogenous pro‐MMP‐2, 2) displayed an enhanced in vitro invasiveness through matrigel‐coated filters independent of MMP‐2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1‐MMP regardless of MMP‐2 expression levels, suggesting that the production of MMP‐2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1‐MMP‐producing cells was associated with an up‐regulation of VEGF expression. These results emphasize the importance of MT1‐MMP during tumor angiogenesis and open new opportunities for the development of anti‐angiogenic strategies combining inhibitors of MT1‐MMP and VEGF antagonists.—Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1‐MMP expression promotes tumor growth and angiogenesis through an up‐regulation of vascular en‐dothelial growth factor expression. FASEB J. 16, 555–564 (2002)
The FASEB Journal | 2002
Laetitia Devy; Silvia Blacher; Christine Grignet-Debrus; Khalid Bajou; Véronique Masson; Robert D. Gerard; Ann Gils; Geert Carmeliet; Peter Carmeliet; Paul Declerck; Agnès Noël; Jean-Michel Foidart
Plasminogen activator inhibitor 1 (PAI‐1) is believed to control proteolytic activity and cell migration during angiogenesis. We previously demonstrated in vivo that this inhibitor is necessary for optimal tumor invasion and vascularization. We also showed that PAI‐1 angiogenic activity is associated with its control of plasminogen activation but not with the regulation of cell‐matrix interaction. To dissect the role of the various components of the plasminogen activation system during angiogenesis, we have adapted the aortic ring assay to use vessels from gene‐inactivated mice. The single deficiency of tPA, uPA, or uPAR, as well as combined deficiencies of uPA and tPA, did not dramatically affect microvessel formation. Deficiency of plasminogen delayed microves‐sel outgrowth. Lack of PAI‐1 completely abolished angio‐genesis, demonstrating its importance in the control of plasmin‐mediated proteolysis. Microvessel outgrowth from PAI‐1‐/‐ aortic rings could be restored by adding exogenous PAI‐1 (wild‐type serum or purified recombi‐nant PAI‐1). Addition of recombinant PAI‐1 led to a bell‐shaped angiogenic response clearly showing that PAI‐1 is proangiogenic at physiological concentrations and antiangiogenic at higher levels. Using specific PAI‐1 mutants, we could demonstrate that PAI‐1 promotes an‐giogenesis at physiological (nanomolar) concentrations through its antiproteolytic activity rather than by interacting with vitronectin.—Devy, L., Blacher, S., Grignet‐Debrus, C., Bajou, K., Masson, V., Gerard, R. D., Gils, A., Carmeliet, G., Carmeliet, P., Declerck, P. J., Noèl, A., Foidart, J. M. The pro‐ or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J. 16, 147–154 (2002)
Cancer Research | 2009
Laetitia Devy; Lili Huang; Laurent Naa; Niranjan Yanamandra; Henk Pieters; Nicolas Frans; Edward F. Chang; Qingfeng Tao; Marc Vanhove; Annabelle Lejeune; Reinoud van Gool; Daniel J. Sexton; Guannan Kuang; Douglas Rank; Shannon Hogan; Csaba Pazmany; Yu Lu Ma; Sonia Schoonbroodt; Robert Charles Ladner; René Hoet; Paula Henderikx; Chris TenHoor; Shafaat A. Rabbani; Maria Luisa Valentino; Clive R. Wood; Daniel T. Dransfield
Inhibition of specific matrix metalloproteinases (MMP) is an attractive noncytotoxic approach to cancer therapy. MMP-14, a membrane-bound zinc endopeptidase, has been proposed to play a central role in tumor growth, invasion, and neovascularization. Besides cleaving matrix proteins, MMP-14 activates proMMP-2 leading to an amplification of pericellular proteolytic activity. To examine the contribution of MMP-14 to tumor growth and angiogenesis, we used DX-2400, a highly selective fully human MMP-14 inhibitory antibody discovered using phage display technology. DX-2400 blocked proMMP-2 processing on tumor and endothelial cells, inhibited angiogenesis, and slowed tumor progression and formation of metastatic lesions. The combination of potency, selectivity, and robust in vivo activity shows the potential of a selective MMP-14 inhibitor for the treatment of solid tumors.
The FASEB Journal | 2002
Amin Hajitou; Christine Grignet; Laetitia Devy; Sarah Berndt; Silvia Blacher; Christophe Deroanne; Khalid Bajou; Timothy Fong; Yawen Chiang; Jean-Michel Foidart; Agnès Noël
Endostatin and angiostatin are known as tumor‐derived angiogenesis inhibitors, but their mechanisms of action are not yet completely defined. We report here that endostatin and angiostatin, delivered by adenoviral vectors, reduced in vitro the neovessel formation in the mouse aortic ring assay by 85 and 40%, respectively. We also demonstrated in vivo that both endostatin and angiostatin inhibited local invasion and tumor vascularization of transplanted murine malignant keratinocytes, and reduced by 50 and 90% the development of highly vascularized murine mammary tumors. This inhibition of tumor growth was associated with a reduction of tumor vascularization. Expression analysis of vascular endothelial growth factor (VEGF) carried out in the mouse aortic ring model revealed a 3‐ to 10‐fold down‐regulation of VEGF mRNA expression in endostatin‐treated rings. A similar down‐regulation of VEGF expression at both mRNA and protein levels was also observed in the two in vivo cancer models after treatment with each angiogenesis inhibitor. This suggests that endostatin and angiostatin effects may be mediated, at least in part, by their ability to down‐regulate VEGF expression within the tumor. This work provides evidence that endostatin and angiostatin act on tumor cells themselves.
Journal of Clinical Investigation | 2005
Xuri Li; Marc Tjwa; Lieve Moons; Pierre Fons; Agnès Noël; Annelii Ny; Jian Min Zhou; Johan Lennartsson; Hong Li; Aernout Luttun; Annica Ponten; Laetitia Devy; Ann Bouché; Hideyasu Oh; Ann Manderveld; Silvia Blacher; David Communi; Pierre Savi; Françoise Bono; Mieke Dewerchin; Jean-Michel Foidart; Monica Autiero; Jean-Marc Herbert; Desire Collen; Carl-Henrik Heldin; Ulf J. Eriksson; Peter Carmeliet
The angiogenic mechanism and therapeutic potential of PDGF-CC, a recently discovered member of the VEGF/PDGF superfamily, remain incompletely characterized. Here we report that PDGF-CC mobilized endothelial progenitor cells in ischemic conditions; induced differentiation of bone marrow cells into ECs; and stimulated migration of ECs. Furthermore, PDGF-CC induced the differentiation of bone marrow cells into smooth muscle cells and stimulated their growth during vessel sprouting. Moreover, delivery of PDGF-CC enhanced postischemic revascularization of the heart and limb. Modulating the activity of PDGF-CC may provide novel opportunities for treating ischemic diseases.
Biological Procedures Online | 2002
Véronique Masson; Laetitia Devy; Christine Grignet-Debrus; Sarah Bernt; Khalid Bajou; Silvia Blacher; Guy Roland; Yawen Chang; Timothy Fong; Peter Carmeliet; Jean-Michel Foidart; Agnès Noël
Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serine-proteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen “pro- or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer.
Clinical Cancer Research | 2004
Erik Maquoi; Nor Eddine Sounni; Laetitia Devy; Fabrice Olivier; Francis Frankenne; Hans-Willi Krell; Frank Grams; Jean-Michel Foidart; Agnès Noël
Purpose: The implication of matrix metalloproteinases (MMPs) in the major stages of cancer progression has fueled interest in the design of synthetic MMP inhibitors (MMPIs) as a novel anticancer therapy. Thus far, drugs used in clinical trials are broad-spectrum MMPIs the therapeutic index of which proved disappointingly low. The development of selective MMPIs for tumor progression-associated MMPs is, thus, likely to offer improved therapeutic possibilities. Experimental Design: The anti-invasive capacity of a series of pyrimidine-trione derivatives was tested in vitro in a chemoinvasion assay, and the most potent compound was further evaluated in vivo in different human tumor xenograft models. The activity of this novel selective MMPI was compared with BB-94, a broad-spectrum inhibitor. Results: Ro-28-2653, an inhibitor with high selectivity for MMP-2, MMP-9, and membrane type 1 (MT1)-MMP, showed the highest anti-invasive activity in vitro. In vivo, Ro-28-2653 reduced the growth of tumors induced by the inoculation of different cell lines producing MMPs and inhibited the tumor-promoting effect of fibroblasts on breast adenocarcinoma cells. Furthermore, Ro-28-2653 reduced tumor vascularization and blocked angiogenesis in a rat aortic ring assay. In contrast, BB-94 up-regulated MMP-9 expression in tumor cells and promoted angiogenesis in the aortic ring assay. Conclusion: Ro-28-2653, a selective and orally bioavailable MMPI with inhibitory activity against MMPs expressed by tumor and/or stromal cells, is a potent antitumor and antiangiogenic agent. In contrast to broad-spectrum inhibitors, the administration of Ro-28-2653 was not associated with the occurrence of adverse side effects that might hamper the therapeutic potential of these drugs.
Cellular and Molecular Life Sciences | 2003
Jean-Marie Rakic; Catherine Maillard; Maud Jost; Khalid Bajou; Véronique Masson; Laetitia Devy; Vincent Lambert; Jean-Michel Foidart; Agnès Noël
Abstract: New blood formation or angiogenesis has become a key target in therapeutic strategies aimed at inhibiting tumor growth and other diseases associated with neovascularization. Angiogenesis is associated with important extracellular remodeling involving different proteolytic systems among which the plasminogen system plays an essential role. It belongs to the large serine proteinase family and can act directly or indirectly by activating matrix metalloproteinases or by liberating growth factors and cytokines sequestered within the extracellular matrix. Migration of endothelial cells is associated with significant upregulation of proteolysis and, conversely, immunoneutralization or chemical inhibition of the system reduces angiogenesis in vitro. On the other hand, genetically altered mice developed normally without overt vascular anomalies indicating the possibility of compensation by other proteases in vivo. Nevertheless, they have in some experimental settings revealed unanticipated roles for previously characterized proteinases or their inhibitors. In this review, the complex mechanisms of action of the serine proteases in pathological angiogenesis are summarized alongside possible therapeutic applications.
Angiogenesis | 2001
Silvia Blacher; Laetitia Devy; Mike F. Burbridge; Guy Roland; Gordon Tucker; Agnès Noël; Jean-Michel Foidart
In vitro angiogenesis assays are essential for the identification of potential angiogenic agents and screening for pharmacological inhibitors. Among these assays, the rat aortic ring model developed by Nicosia bridges the gap between in vivo and in vitro models. The quantification of angiogenesis on this system must be applicable to characterise vascular networks of various states of complexity. We present here an improved computer-assisted image analysis which allows: (1) the determination of the aortic ring area and its factor shape; (2) the number of microvessels, the total number of branchings, the maximal microvessel length and the microvessel distribution; (3) the total number of isolated fibroblast-like cells and their distribution. We show that this method is suitable to quantify spontaneous angiogenesis as well as to analyse a complex microvascular network induced by various concentrations of vascular endothelial growth factor (VEGF). In addition, by evaluating a new parameter, the fibroblast-like cell distribution, our results show that: (1) during spontaneous angiogenic response, maximal fibroblast-like cell migration delimits microvascular outgrowth; and (2) the known angiogenic inhibitor Batimastat prevents endothelial cell sprouting without completely blocking fibroblast-like cell migration. Finally, this new method of quantification is of great interest to better understand angiogenesis and to test pro- or anti-angiogenic agents.