Laetitia van Wittenberghe
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laetitia van Wittenberghe.
Science Translational Medicine | 2014
Martin K. Childers; Romain Joubert; Karine Poulard; C. Moal; Robert W. Grange; Jonathan Doering; Michael W. Lawlor; Branden E. Rider; T. Jamet; N. Danièle; Samia Martin; Christel Rivière; Thomas Soker; Caroline Hammer; Laetitia van Wittenberghe; Mandy Lockard; Xuan Guan; Melissa A. Goddard; Erin Mitchell; Jane Barber; J. Koudy Williams; David L. Mack; Mark E. Furth; Alban Vignaud; Carole Masurier; Fulvio Mavilio; Philippe Moullier; Alan H. Beggs; Anna Buj-Bello
Intravenous injection of an adeno-associated viral vector expressing the myotubularin (MTM1) gene improves survival and rescues skeletal muscle function in mice and dogs affected by myotubular myopathy. Restoring Skeletal Muscle Function X-linked myotubular myopathy is a fatal disease of skeletal muscle that affects about 1 in 50,000 male births. Patients harbor mutations in the MTM1 gene and are typically born floppy, with severely weak limb and respiratory muscles. Survival requires intensive support, often including tube feeding and mechanical ventilation, but effective therapy is not available for patients. Gene replacement therapy using adeno-associated viral (AAV) vectors has potential for the treatment of inherited diseases like myotubular myopathy. Therefore, Childers et al. tested the effects of a recombinant AAV vector expressing myotubularin in two animal models of myotubularin deficiency: Mtm1 knockout mice and dogs carrying a naturally occurring MTM1 gene mutation. Results in both mice and dogs showed that a single intravascular injection of AAV strengthened severely weak muscles, corrected muscle pathology, and prolonged survival. No toxicity or immune response was observed in dogs. These results demonstrate the efficacy of gene replacement therapy for myotubular myopathy in animal models and pave the way to a clinical trial in patients. Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.
Molecular therapy. Methods & clinical development | 2016
Giuseppe Ronzitti; Giulia Bortolussi; Remco van Dijk; Fanny Collaud; Severine Charles; Christian Leborgne; Patrice Vidal; Samia Martin; Bernard Gjata; Marcelo Simon Sola; Laetitia van Wittenberghe; Alban Vignaud; Philippe Veron; Piter J. Bosma; Andrés F. Muro; Federico Mingozzi
Crigler-Najjar syndrome is a severe metabolic disease of the liver due to a reduced activity of the UDP Glucuronosyltransferase 1A1 (UGT1A1) enzyme. In an effort to translate to the clinic an adeno-associated virus vector mediated liver gene transfer approach to treat Crigler-Najjar syndrome, we developed and optimized a vector expressing the UGT1A1 transgene. For this purpose, we designed and tested in vitro and in vivo multiple codon-optimized UGT1A1 transgene cDNAs. We also optimized noncoding sequences in the transgene expression cassette. Our results indicate that transgene codon-optimization is a strategy that can improve efficacy of gene transfer but needs to be carefully tested in vitro and in vivo. Additionally, while inclusion of introns can enhance gene expression, optimization of these introns, and in particular removal of cryptic ATGs and splice sites, is an important maneuver to enhance safety and efficacy of gene transfer. Finally, using a translationally optimized adeno-associated virus vector expressing the UGT1A1 transgene, we demonstrated rescue of the phenotype of Crigler-Najjar syndrome in two animal models of the disease, Gunn rats and Ugt1a1-/- mice. We also showed long-term (>1 year) correction of the disease in Gunn rats. These results support further translation of the approach to humans.
Blood Advances | 2017
Amine Meliani; Florence Boisgerault; Zachary Fitzpatrick; Solenne Marmier; Christian Leborgne; Fanny Collaud; Marcelo Simon Sola; Severine Charles; Giuseppe Ronzitti; Alban Vignaud; Laetitia van Wittenberghe; Béatrice Marolleau; Fabienne Jouen; S. M. Tan; Olivier Boyer; Olivier D. Christophe; Alain Brisson; Casey A. Maguire; Federico Mingozzi
Results from clinical trials of liver gene transfer for hemophilia demonstrate the potential of the adeno-associated virus (AAV) vector platform. However, to achieve therapeutic transgene expression, in some cases high vector doses are required, which are associated with a higher risk of triggering anti-capsid cytotoxic T-cell responses. Additionally, anti-AAV preexisting immunity can prevent liver transduction even at low neutralizing antibody (NAb) titers. Here, we describe the use of exosome-associated AAV (exo-AAV) vectors as a robust liver gene delivery system that allows the therapeutic vector dose to be decreased while protecting from preexisting humoral immunity to the capsid. The in vivo efficiency of liver targeting of standard AAV8 or AAV5 and exo-AAV8 or exo-AAV5 vectors expressing human coagulation factor IX (hF.IX) was evaluated. A significant enhancement of transduction efficiency was observed, and in hemophilia B mice treated with 4 × 1010 vector genomes per kilogram of exo-AAV8 vectors, a staggering ∼1 log increase in hF.IX transgene expression was observed, leading to superior correction of clotting time. Enhanced liver expression was also associated with an increase in the frequency of regulatory T cells in lymph nodes. The efficiency of exo- and standard AAV8 vectors in evading preexisting NAbs to the capsid was then evaluated in a passive immunization mouse model and in human sera. Exo-AAV8 gene delivery allowed for efficient transduction even in the presence of moderate NAb titers, thus potentially extending the proportion of subjects eligible for liver gene transfer. Exo-AAV vectors therefore represent a platform to improve the safety and efficacy of liver-directed gene transfer.
Molecular therapy. Methods & clinical development | 2015
Jean-Baptiste Dupont; Benoît Tournaire; Christophe Georger; Béatrice Marolleau; Laurence Jeanson-Leh; Mireille Ledevin; Pierre Lindenbaum; Emilie Lecomte; Benjamin Cogné; Laurence Dubreil; Thibaut Larcher; Bernard Gjata; Laetitia van Wittenberghe; Caroline Le Guiner; Magalie Penaud-Budloo; Richard O. Snyder; Philippe Moullier; Adrien Léger
Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials.
Molecular therapy. Methods & clinical development | 2016
Nicole Armbruster; Annalisa Lattanzi; Matthieu Jeavons; Laetitia van Wittenberghe; Bernard Gjata; Thibaut Marais; Samia Martin; Alban Vignaud; Thomas Voit; Fulvio Mavilio; Martine Barkats; Ana Buj-Bello
Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.
Science Translational Medicine | 2017
Francesco Puzzo; Pasqualina Colella; Maria G. Biferi; Deeksha Bali; Nicole K. Paulk; Patrice Vidal; Fanny Collaud; Marcelo Simon-Sola; Severine Charles; Romain Hardet; Christian Leborgne; Amine Meliani; Mathilde Cohen-Tannoudji; Stéphanie Astord; Bernard Gjata; Pauline Sellier; Laetitia van Wittenberghe; A. Vignaud; Florence Boisgerault; Martine Barkats; P. Laforêt; Mark A. Kay; Dwight D. Koeberl; Giuseppe Ronzitti; Federico Mingozzi
Liver delivery of engineered GAA transgenes to mice with Pompe disease rescued glycogen accumulation in multiple tissues. Revealing a secretable GAA for Pompe disease Pompe disease is a genetic disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to glycogen accumulation in all cells of the body. This accumulation leads to severe neuromuscular disabilities that can be life-threatening. Puzzo et al. used bioinformatic analysis, protein engineering, and gene therapy to develop and deliver a GAA transgene encoding a secretable GAA. Liver-specific, adeno-associated virus (AAV) vector–mediated GAA delivery rescued the Pompe disease phenotype in a mouse model and increased GAA expression in healthy monkeys, opening possibilities for future translation of this approach for treating Pompe disease. Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.
Nature Communications | 2018
Amine Meliani; Florence Boisgerault; Romain Hardet; Solenne Marmier; Fanny Collaud; Giuseppe Ronzitti; Christian Leborgne; Helena Costa Verdera; Marcelo Simon Sola; Severine Charles; A. Vignaud; Laetitia van Wittenberghe; Giorgia Manni; Olivier D. Christophe; Francesca Fallarino; Christopher J. Roy; Alicia Michaud; Petr Ilyinskii; Takashi Kishimoto; Federico Mingozzi
Gene therapy mediated by recombinant adeno-associated virus (AAV) vectors is a promising treatment for systemic monogenic diseases. However, vector immunogenicity represents a major limitation to gene transfer with AAV vectors, particularly for vector re-administration. Here, we demonstrate that synthetic vaccine particles encapsulating rapamycin (SVP[Rapa]), co-administered with AAV vectors, prevents the induction of anti-capsid humoral and cell-mediated responses. This allows successful vector re-administration in mice and nonhuman primates. SVP[Rapa] dosed with AAV vectors reduces B and T cell activation in an antigen-selective manner, inhibits CD8+ T cell infiltration in the liver, and efficiently blocks memory T cell responses. SVP[Rapa] immunomodulatory effects can be transferred from treated to naive mice by adoptive transfer of splenocytes, and is inhibited by depletion of CD25+ T cells, suggesting a role for regulatory T cells. Co-administration of SVP[Rapa] with AAV vector represents a powerful strategy to modulate vector immunogenicity and enable effective vector re-administration.Immunogenicity of AAV vectors renders repeated AAV dosing ineffective. Here the authors show that coadministration of nanoparticle-encapsulated rapamycin overcomes AAV immunogenicity through Treg induction, enabling efficient AAV redosing in mice and nonhuman primates.
International Journal of Pharmaceutics | 2017
Christian Leborgne; Debborah Alimi-Guez; Nelly El Shafey; Laetitia van Wittenberghe; Pascal Bigey; Daniel Scherman; Antoine Kichler
Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. In addition, muscle is an attractive target tissue because it is easily accessible. However, very few synthetic vectors proved capable of surpassing naked DNA mediated muscle gene transfer. In fact, only neutral copolymers, in particular poloxamers, demonstrated capacities to increase transgene expression in skeletal muscles. Here, we studied in vitro and in vivo behaviour of different bile salts. We report that sodium deoxycholate (DOC) and derivatives thereof increase after intramuscular injection by more than 100-fold the levels of the reporter gene luciferase compared to naked DNA. Using a LacZ expression cassette, we found that more than 20% of the muscle fibers expressed the reporter gene. Prolonged expression of a secreted reporter gene derived from a natural murine alkaline phosphatase enzyme could be documented. Altogether, our results demonstrate that bile salts belong to the most efficient chemicals identified so far for skeletal muscle gene transfer. Importantly, since these compounds are naturally found in the body, there is no risk of immune response against them and in addition several bile salts are already used in human medicine. Bile salt mediated muscle gene transfer may thus have broad applications in gene therapy.
Molecular therapy. Nucleic acids | 2016
Elena Barbon; Mattia Ferrarese; Laetitia van Wittenberghe; Peggy Sanatine; Giuseppe Ronzitti; Fanny Collaud; Pasqualina Colella; Mirko Pinotti; Federico Mingozzi
Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.Disease-causing splicing mutations can be rescued by variants of the U1 small nuclear RNA (U1snRNAs). However, the evaluation of the efficacy and safety of modified U1snRNAs as therapeutic tools is limited by the availability of cellular and animal models specific for a given mutation. Hence, we exploited the hyperactive Sleeping Beauty transposon system (SB100X) to integrate human factor IX (hFIX) minigenes into genomic DNA in vitro and in vivo. We generated stable HEK293 cell lines and C57BL/6 mice harboring splicing-competent hFIX minigenes either wild type (SChFIX-wt) or mutated (SChFIXex5-2C). In both models the SChFIXex5-2C variant, found in patients affected by Hemophilia B, displayed an aberrant splicing pattern characterized by exon 5 skipping. This allowed us to test, for the first time in a genomic DNA context, the efficacy of the snRNA U1-fix9, delivered with an adeno-associated virus (AAV) vector. With this approach, we showed rescue of the correct splicing pattern of hFIX mRNA, leading to hFIX protein expression. These data validate the SB100X as a versatile tool to quickly generate models of human genetic mutations, to study their effect in a stable DNA context and to assess mutation-targeted therapeutic strategies.
Molecular Therapy | 2017
Patrice Vidal; Serena Pagliarani; Pasqualina Colella; Helena Costa Verdera; Louisa Jauze; Monika Gjorgjieva; Francesco Puzzo; Solenne Marmier; Fanny Collaud; Marcelo Simon Sola; Severine Charles; Sabrina Lucchiari; Laetitia van Wittenberghe; Alban Vignaud; Bernard Gjata; Isabelle Richard; Pascal Laforêt; Edoardo Malfatti; Gilles Mithieux; Fabienne Rajas; Giacomo P. Comi; Giuseppe Ronzitti; Federico Mingozzi