Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laia Chavarria is active.

Publication


Featured researches published by Laia Chavarria.


Liver Transplantation | 2011

Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume

Rita García-Martínez; Alex Rovira; Juli Alonso; Carlos Jacas; Macarena Simón-Talero; Laia Chavarria; Victor Vargas; Juan Córdoba

Hepatic encephalopathy (HE) is a common complication of cirrhosis that is associated with brain atrophy and may participate in impaired cognitive function after liver transplantation. This study analyzes the relationship of HE with cognitive function and brain volume after transplantation. A total of 52 consecutive patients with cirrhosis (24 alcohol abuse, 24 prior HE, 14 diabetes mellitus) completed a neuropsychological assessment before liver transplantation and again, 6 to 12 months after transplantation. In 24 patients who underwent the posttransplant assessment, magnetic resonance imaging was performed in addition, with measurement of brain volume and relative concentration of N‐acetylaspartate (NAA) and creatine/phosphocreatine (Cr), a neuronal marker, by magnetic resonance spectroscopy. Neuropsychological assessment prior to transplantation identified minimal HE in 28 patients. All cognitive indexes improved after liver transplantation, but 7 patients (13%) showed persistent mild cognitive impairment. Global cognitive function after transplantation was poorer in patients with the following variables before liver transplantation: alcohol etiology, diabetes mellitus, and HE. Brain volume after transplantation was smaller in patients with prior HE. Brain volume correlated to NAA/Cr values (r = 0.498, P = 0.013) and poor motor function (r = 0.41, P = 0.049). In conclusion, the association of HE with cognitive function and brain volume suggests that having experienced HE before liver transplantation impairs the posttransplantation neurological outcome. Liver Transpl 17:38–46, 2011.


Gastroenterology | 2010

Diffusion Tensor Imaging Supports the Cytotoxic Origin of Brain Edema in a Rat Model of Acute Liver Failure

Laia Chavarria; Marc Oria; Jordi Romero–Gimenez; Juli Alonso; Silvia Lope–Piedrafita; Juan Córdoba

BACKGROUND & AIMS Brain edema is a severe complication of acute liver failure (ALF) that has been related to ammonia concentrations. Two mechanisms have been proposed in the pathogenesis: vasogenic edema that is secondary to the breakdown of the blood-brain barrier and cytotoxic edema caused by ammonia metabolites in astrocytes. METHODS We applied magnetic resonance techniques to assess the intracellular or extracellular distribution of brain water and metabolites in a rat model of devascularized ALF. The brain water content was assessed by gravimetry and blood-brain barrier permeability was determined from the transfer constant of (14)C-labeled sucrose. RESULTS Rats with ALF had a progressive decrease in the apparent diffusion coefficient (ADC) in all brain regions. The average decrease in ADC was significant in precoma (-14%) and coma stages (-20%). These changes, which indicate an increase of the intracellular water compartment, were followed by a significant increase in total brain water (coma 82.4% +/- 0.3% vs sham 81.6% +/- 0.3%; P = .0001). Brain concentrations of glutamine (6 hours, 540%; precoma, 851%; coma, 1086%) and lactate (6 hours, 166%; precoma, 998%; coma, 3293%) showed a marked increase in ALF that paralleled the decrease in ADC and neurologic outcome. In contrast, the transfer constant of (14)C-sucrose was unaltered. CONCLUSIONS The pathogenesis of brain edema in an experimental model of ALF involves a cytotoxic mechanism: the metabolism of ammonia in astrocytes induces an increase of glutamine and lactate that appears to mediate cellular swelling. Therapeutic measures should focus on removing ammonia and improving brain energy metabolism.


Neurochemistry International | 2011

Neuroimaging in acute liver failure.

Laia Chavarria; Juli Alonso; Alex Rovira; Juan Córdoba

Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.


Hepatology | 2010

Motor‐evoked potentials in awake rats are a valid method of assessing hepatic encephalopathy and of studying its pathogenesis

Marc Oria; Nicolas Chatauret; Laia Chavarria; Jordi Romero-Giménez; Lluis Palenzuela; Benjamin Pardo-Yules; José Antonio Arranz; Guillermo Bodega; Núria Raguer; Juan Córdoba

Experimental models of hepatic encephalopathy (HE) are limited by difficulties in objectively monitoring neuronal function. There are few models that examine a well‐defined neuronal pathway and lack the confounding effects of anesthetics. Motor‐evoked potentials (MEPs) assess the function of the motor tract, which has been shown to be impaired in patients with cirrhosis. MEPs were elicited by cranial stimulation (central) and compound motor action potential by sciatic nerve stimulation (peripheral) in several models of HE in the rat. The experiments were performed using subcutaneous electrodes without anesthetics. Brain water content was assessed by gravimetry, brain metabolites were measured by magnetic resonance spectroscopy, and amino acids in microdialysates from the frontal cortex were analyzed by high‐performance liquid chromatography. Abnormalities of MEP were observed in acute liver failure (ALF) induced by hepatic devascularization in relation to the progression of neurological manifestations. Similar disturbances were seen in rats with portocaval anastomosis after the administration of blood or lipopolysaccharide, but were absent in rats with biliary duct ligation. Hypothermia (≤35°C) and mannitol prevented the development of brain edema in acute liver failure, but only hypothermia avoided the decrease in the amplitude of MEP. Disturbances of MEP caused by the administration of blood into the gastrointestinal tract in rats with portocaval anastomosis were associated with an increase in ammonia, glutamine, and glutamate in brain microdialysate. Conclusion: Assessment of MEP in awake rats is a valid method to monitor HE in models of ALF and precipitated HE. This method shows the lack of efficacy of mannitol, a therapy that decreases brain edema, and relates disturbances of the function of the motor tract to ammonia and its metabolites. (HEPATOLOGY 2010)


Liver International | 2013

Brain magnetic resonance in experimental acute-on-chronic liver failure.

Laia Chavarria; Marc Oria; Jordi Romero-Giménez; Juli Alonso; Silvia Lope-Piedrafita; Juan Córdoba

Acute‐on‐chronic liver failure is the term that refers to sustained liver injury with acute decompensation, usually induced by a precipitating factor. A common link between ensuing failures of various organs is impairment of the vascular supply, which may also induce vasogenic oedema in the brain. The aim of this study was to perform magnetic resonance (MR) study of the brain in a rat model combining bile duct ligation (BDL) and lipopolysaccharide (LPS) administration to investigate brain oedema in liver failure.


Metabolic Brain Disease | 2014

Magnetic resonance of the brain in chronic and acute liver failure

Laia Chavarria; Juan Córdoba

Brain alterations such as hepatic encephalopathy or brain edema are usually associated with liver failure. The mechanisms that lead to the generation of edema seem to be different depending on the course of liver failure (acute, chronic or acute-on-chronic liver failure). Several neuroimaging methods allow a non-invasive assessment of brain alterations in liver failure. Magnetic resonance has gained more interest due to the ability of giving information about cerebral metabolism using spectroscopy, water distribution by diffusion methods or neuronal connectivity by means of resting state magnetic resonance. These techniques have been applied to experimental models and patients with liver failure to elucidate cerebral pathways involved in the pathogenesis of hepatic encephalopathy. In the future, the development of new magnetic resonance implementations will generate handy tools for the study of the brain and get better understanding of the mechanisms that take place in liver failure. This could be useful for the early diagnosis, as well as for the design of new treatments for cerebral complications of liver failure.


Metabolic Brain Disease | 2013

Encephalopathy and liver transplantation

Laia Chavarria; Juan Córdoba

Liver transplantation (LT) candidates experience frequently episodic or persistent hepatic encephalopathy. In addition, these patients can exhibit neurological comorbidities that contribute to cognitive impairment in the pre-transplant period. Assessment of the respective contribution of hepatic encephalopathy or comorbidities in the cognitive manifestations is critical to estimate the neurological benefits of restoring liver function. Magnetic resonance imaging and spectroscopy are useful to assess the impact of liver failure or comorbidities. This assessment is critical to decide liver transplant in difficult cases. In the early postoperative period, LT is commonly complicated by a confusional syndrome. The possible role of persisting hepatic encephalopathy in its development has not been clearly established. The origin is usually considered multifactorial and relates to complications following LT, such as infections, rejection, primary liver dysfunction, immunosuppressors, etc.… The diagnosis and treatment is based in the recognition of comorbidities and optimal care of metabolic disturbances. Several studies have demonstrated recovery of cognitive function after LT in patients that have exhibited hepatic encephalopathy. However, some deficits may persist specifically among patients with persistent HE. Other factors present before LT that contribute to a worse neuropsychological outcome after LT are diabetes mellitus and alcohol consumption. Long-term after LT, cognitive function may worsen in relation to vascular risk factors.


Journal of clinical and experimental hepatology | 2015

Magnetic resonance imaging and spectroscopy in hepatic encephalopathy.

Laia Chavarria; Juan Córdoba

Hepatic encephalopathy is a brain alteration associated to liver failure that produces cognitive impairments at long term. Neuroimaging are non-invasive methods for the study of the brain by means of spectroscopy and imaging techniques. These technologies give huge information about cerebral metabolism and water distribution to explore brain pathways involved in the pathogenesis of hepatic encephalopathy. Furthermore, new magnetic resonance implementations such as voxel-based morphometry or resting-state functional magnetic resonance imaging allow studying brain atrophy and neuronal connectivity of the cerebral network involved in the neurocognitive impairments observed in the patients. The development of magnetic resonance technology will generate handy tools for the brain study of liver failure to elucidate the time-course of the pathology and thus to obtain an early diagnosis of cerebral complications.


NMR in Biomedicine | 2014

Real‐time assessment of 13C metabolism reveals an early lactate increase in the brain of rats with acute liver failure

Laia Chavarria; Jordi Romero-Giménez; Eva Monteagudo; Silvia Lope-Piedrafita; Juan Córdoba

Intracranial hypertension is a severe complication of acute liver failure (ALF) secondary to brain edema. The pathogenesis of cerebral edema in ALF is not clear, but seems to be related to energy metabolism in which lactate may have an important role. The aim of this study was to follow the synthesis of brain lactate using a novel in vivo metabolic technology in a rat model of ALF. Time‐resolved 13C MRS of hyperpolarized 13C1‐pyruvate was used to quantitatively follow the in vivo conversion of pyruvate to its substrates in a model of devascularized ALF in rats. Rats with ALF showed a significant increase in the lactate to pyruvate ratio from 36% to 69% during the progression of liver disease relative to rats with portocaval anastomosis. Rats with ALF also showed a significant increase in the alanine to pyruvate ratio from 72% to 95%. These increases were detectable at very early stages (6 h) when animals had no evident disease signs in their behavior (without loss of righting or corneal reflexes). This study shows the dynamic consequences of cerebral in vivo 13C metabolism at real time in rats with ALF. The early detection of the de novo synthesis of lactate suggests that brain lactate is involved in the physiopathology of ALF. Hyperpolarization is a potential non‐invasive technique to follow the in vivo metabolism, and both the development and optimization of 13C‐labeled substrates can clarify the mechanism involved in ALF. Copyright


Journal of Cerebral Blood Flow and Metabolism | 2017

Cerebellar neurodegeneration in a new rat model of episodic hepatic encephalopathy.

T. García-Lezana; Marc Oria; Jordi Romero-Giménez; Jordi Bové; Miquel Vila; Joan Genescà; Laia Chavarria; Juan Córdoba

Hepatic encephalopathy has traditionally been considered a reversible disorder. However, recent studies suggested that repeated episodes of hepatic encephalopathy cause persistent impairment leading to neuronal loss. The aims of our study were the development of a new animal model that reproduces the course of episodic hepatic encephalopathy and the identification of neurodegeneration evidences. Rats with portacaval anastomosis underwent simulated episodes of hepatic encephalopathy, triggered by the regular administration of ammonium acetate, and/or lipopolysaccharide. The neurological status was assessed and neuronal loss stereologically quantified in motor areas. During the simulated episodes, ammonia induced reversible motor impairment in portacaval anastomosis rats. In cerebellum, stereology showed a reduction in Purkinje cell population in portacaval anastomosis and PCA+NH3 groups and morphological changes. An increase in astrocyte size in PCA+NH3 group and activated microglia in groups treated with ammonium acetate and/or lipopolysaccharide was observed. A modulation of neurodegeneration-related genes and the presence of apoptosis in Bergmann glia were observed. This new animal model reproduces the clinical course of episodic hepatic encephalopathy when ammonia is the precipitant factor and demonstrates the existence of neuronal loss in cerebellum. The persistence of over-activated microglia and reactive astrocytes could participate in the apoptosis of Bergmann glia and therefore Purkinje cell degeneration.

Collaboration


Dive into the Laia Chavarria's collaboration.

Top Co-Authors

Avatar

Juan Córdoba

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Romero-Giménez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marc Oria

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alex Rovira

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Juli Alonso

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Joan Genescà

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

T. García-Lezana

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

J. Córdoba

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Juli Alonso

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Macarena Simón-Talero

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge