Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laia Tolosa is active.

Publication


Featured researches published by Laia Tolosa.


Toxicological Sciences | 2012

Development of a Multiparametric Cell-based Protocol to Screen and Classify the Hepatotoxicity Potential of Drugs

Laia Tolosa; Sandra Pinto; M. Teresa Donato; Agustín Lahoz; José V. Castell; J. Enrique O’Connor; M. José Gómez-Lechón

Hepatotoxicity is a major reason for drug nonapprovals and withdrawals. The multiparametric analysis of xenobiotic toxicity at the single cells level using flow cytometry and cellular imaging-based approaches, such as high-content screening (HCS) technology, could play a key role in the detection of toxicity and the classification of compounds based on patterns of cellular injury. This study aimed to develop and validate a practical, reproducible, in vitro multiparametric cell-based protocol to assess those drugs that are potentially hepatotoxic to humans and to suggest their mechanisms of action. The assay was applied to HepG2 human cell line cultured in 96-well plates and exposed to 78 different compounds for 3 and 24 h at a range of concentrations (1-1000μM). After treatments, cells were simultaneously loaded with five fluorescent dyes showing optical compatibility and were then analyzed with the High-Content Screening Station Scan^R (Olympus). By using the new technology of HCS cell parameters associated with nuclear morphology, plasma membrane integrity, mitochondrial function, intracellular calcium concentration, and oxidative stress, indicative of prelethal cytotoxic effects and representative of different mechanisms of toxicity, were measured at the single cells level, which allows high-throughput screening. This strategy appears to identify early and late events in the hepatotoxic process and also suggests the mechanism(s) implicated in the toxicity of compounds to thereby classify them according to their degree of injury (no injury, low, moderate, and high injury).


Expert Opinion on Drug Metabolism & Toxicology | 2014

Competency of different cell models to predict human hepatotoxic drugs

M. José Gómez-Lechón; Laia Tolosa; Isabel Conde; M. Teresa Donato

Introduction: The liver is the most important target for drug-induced toxicity. This vulnerability results from functional liver features and its role in the metabolic elimination of most drugs. Drug-induced liver injury is a significant leading cause of acute, chronic liver disease and an important safety issue when developing new drugs. Areas covered: This review describes the advantages and limitations of hepatic cell-based models for early safety risk assessment during drug development. These models include hepatocytes cultured as monolayer, collagen-sandwich; emerging complex 3D configuration; liver-derived cell lines; stem cell-derived hepatocytes. Expert opinion: In vitro toxicity assays performed in hepatocytes or hepatoma cell lines can potentially provide rapid and cost–effective early feedback to identify toxic candidates for compound prioritization. However, their capacity to predict hepatotoxicity depends critically on cells’ functional performance. In an attempt to improve and prolong functional properties of cultured cells, different strategies to recreate the in vivo hepatocyte environment have been explored. 3D cultures, co-cultures of hepatocytes with other cell types and microfluidic devices seem highly promising for toxicological studies. Moreover, hepatocytes derived from human pluripotent stem cells are emerging cell-based systems that may provide a stable source of hepatocytes to reliably screen metabolism and toxicity of candidate compounds.


Journal of Biomolecular Screening | 2012

High-Content Imaging Technology for the Evaluation of Drug-Induced Steatosis Using a Multiparametric Cell-Based Assay

M. Teresa Donato; Laia Tolosa; Nuria Jiménez; José V. Castell; M. José Gómez-Lechón

In the present study, we developed a cell-based protocol for the identification of drugs able to induce steatosis. The assay measures multiple markers of toxicity in a 96-well plate format using high-content screening (HCS) technology. After treating HepG2 cells with increasing concentrations of the tested compounds, toxicity parameters were analyzed using fluorescent probes: BODIPY493/503 (lipid content), 2′,7′-dihydrodichlorofluorescein diacetate (reactive oxygen species [ROS] generation), tetramethyl rhodamine methyl ester (mitochondrial membrane potential), propidium iodide (cell viability), and Hoechst 33342 (nuclei staining). A total of 16 drugs previously reported to induce liver steatosis through different mechanisms (positive controls) and six nonsteatotic compounds (negative controls) were included in the study. All the steatosis-positive compounds significantly increased BODIPY493/503 fluorescence in HepG2 cells, whereas none of the negative controls induced lipid accumulation. In addition to effects on fat levels, increased ROS generation was produced by certain compounds, which could be indicative of increased risk of liver damage. Our results suggest that this in vitro approach is a simple, rapid, and sensitive screening tool for steatosis-inducing drugs. This conclusion should be confirmed by testing a larger number of steatosis-positive and -negative inducers.


PLOS ONE | 2012

Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver

Marta Moya; Marta Benet; Carla Guzmán; Laia Tolosa; Carmelo García-Monzón; Eugenia Pareja; José V. Castell; Ramiro Jover

Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.


Toxicology in Vitro | 2010

Mechanism-based selection of compounds for the development of innovative in vitro approaches to hepatotoxicity studies in the LIINTOP project.

María José Gómez-Lechón; Laia Tolosa; José V. Castell; María Teresa Donato

The 6th European Framework Programme project LIINTOP was specifically raised to optimise and provide established protocols and experimental in vitro models for testing intestinal and liver absorption, metabolism and toxicity of molecules of pharmacological interest. It has been focused on some of the most promising existing liver and intestine in vitro models with the aim of further improving their performance and thus taking them to a pre-normative research stage. Regarding the specific area of the liver, a first basic approach was the optimisation of in vitro hepatic models and the development and optimisation of in vitro approaches for toxicity screening. New advanced technologies have been proposed and developed in order to determine cellular and molecular targets as endpoints of drug exposure. A key issue in the development and optimisation of in vitro hepatotoxicity screening methods was the selection of structurally diverse suitable hepatotoxic reference model compounds to be tested. To this end, a number of solid selection criteria were defined (drugs preferably than chemical agents, well-documented hepatotoxicity in man and well-defined mechanism/s of hepatotoxicity, commercially available no volatile compounds with unequivocal CAS number and chemical structure), the strategy followed, including all resources consulted, is described and the selected compounds are extensively illustrated.


Toxicology in Vitro | 2012

Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment.

Laia Tolosa; M. Teresa Donato; Gabriela Pérez-Cataldo; José V. Castell; M. José Gómez-Lechón

In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing.


Journal of Applied Toxicology | 2016

Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs.

M. José Gómez-Lechón; Laia Tolosa; M. Teresa Donato

Drug‐induced liver injury (DILI) is a significant leading cause of hepatic dysfunction, drug failure during clinical trials and post‐market withdrawal of approved drugs. Many cases of DILI are unexpected reactions of an idiosyncratic nature that occur in a small group of susceptible individuals. Intensive research efforts have been made to understand better the idiosyncratic DILI and to identify potential risk factors. Metabolic bioactivation of drugs to form reactive metabolites is considered an initiation mechanism for idiosyncratic DILI. Reactive species may interact irreversibly with cell macromolecules (covalent binding, oxidative damage), and alter their structure and activity. This review focuses on proposed in vitro screening strategies to predict and reduce idiosyncratic hepatotoxicity associated with drug bioactivation. Compound incubation with metabolically competent biological systems (liver‐derived cells, subcellular fractions), in combination with methods to reveal the formation of reactive intermediates (e.g., formation of adducts with liver proteins, metabolite trapping or enzyme inhibition assays), are approaches commonly used to screen the reactivity of new molecules in early drug development. Several cell‐based assays have also been proposed for the safety risk assessment of bioactivable compounds. Copyright


Archives of Toxicology | 2015

High-content screening technology for studying drug-induced hepatotoxicity in cell models

Laia Tolosa; M. José Gómez-Lechón; M. Teresa Donato

High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.


World Journal of Gastroenterology | 2016

Hepatocyte transplantation program: Lessons learned and future strategies

Eugenia Pareja Ibars; Miriam Cortés; Laia Tolosa; María José Gómez-Lechón; Slivia López; José V. Castell; José Mir

This review aims to share the lessons we learned over time during the setting of the hepatocyte transplantation (HT) program at the Hepatic Cell Therapy Unit at Hospital La Fe in Valencia. New sources of liver tissue for hepatocyte isolation have been explored. The hepatocyte isolation and cryopreservation procedures have been optimized and quality criteria for assessment of functionality of hepatocyte preparations and suitability for HT have been established. The results indicate that: (1) Only highly viable and functional hepatocytes allow to recover those functions lacking in the native liver; (2) Organs with steatosis (≥ 40%) and from elderly donors are declined since low hepatocyte yields, viability and cell survival after cryopreservation, are obtained; (3) Neonatal hepatocytes are cryopreserved without significant loss of viability or function representing high-quality cells to improve human HT; (4) Cryopreservation has the advantage of providing hepatocytes constantly available and of allowing the quality evaluation and suitability for transplantation; and (5) Our results from 5 adults with acute liver failure and 4 from children with inborn metabolic diseases, indicate that HT could be a very useful and safe cell therapy, as long as viable and metabolically functional human hepatocytes are used.


Methods of Molecular Biology | 2015

General Cytotoxicity Assessment by Means of the MTT Assay.

Laia Tolosa; María Teresa Donato; María José Gómez-Lechón

Cytotoxicity assays were among the first in vitro bioassay methods used to predict toxicity of substances to various tissues. In vitro cytotoxicity testing provides a crucial means for safety assessment and screening, and for ranking compounds. The choice of using a particular cytotoxicity assay technology may be influenced by specific research goals. As such, four main classes of assays are used to monitor the response of cultured cells after treatment with potential toxicants. These methods measure viability, cell membrane integrity, cell proliferation, and metabolic activity. In this chapter, we focus on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction colorimetric assay to evaluate detrimental intracellular effects on metabolic activity. This assay is well-characterized, simple to use and remains popular in several laboratories worldwide.

Collaboration


Dive into the Laia Tolosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenia Pareja

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Idania Rodeiro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge