Laís de Carvalho
Rio de Janeiro State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laís de Carvalho.
Clinical Science | 2010
Vanessa Souza-Mello; Bianca Martins Gregório; Fernando S. Cardoso-de-Lemos; Laís de Carvalho; Marcia Barbosa Aguila; Carlos Alberto Mandarim-de-Lacerda
The aim of the present study was to evaluate the effects of monotherapies and combinations of drugs on insulin sensitivity, adipose tissue morphology, and pancreatic and hepatic remodelling in C57BL/6 mice fed on a very HF (high-fat) diet. Male C57BL/6 mice were fed on an HF (60% lipids) diet or SC (standard chow; 10% lipids) diet for 10 weeks, after which time the following drug treatments began: HF-T (HF diet treated with telmisartan; 5.2 mg x kg-1 of body weight x day-1), HF-S (HF diet treated with sitagliptin; 1.08 g x kg-1 of body weight.day-1), HF-M (HF diet treated with metformin; 310.0 mg x kg-1 of body weight x day-1), HF-TM (HF diet treated with telmisartan+metformin), HF-TS (HF diet treated with telmisartan+sitagliptin) and HF-SM (HF diet treated with sitagliptin+metformin). Treated groups also had free access to the HF diet, and treatments lasted for 6 weeks. Morphometry, stereological tools, immunostaining, ELISA, Western blot analysis and electron microscopy were used. The HF diet yielded an overweight phenotype, an increase in oral glucose intolerance, hyperinsulinaemia, hypertrophied islets and adipocytes, stage 2 steatosis (>33%), and reduced liver PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and GLUT-2 (glucose transporter-2) levels, concomitant with enhanced SREBP-1 (sterol-regulatory-element-binding protein-1) expression (P<0.0001). Conversely, all drug treatments resulted in significant weight loss, a reversal of insulin resistance, islet and adipocyte hypertrophy, and alleviated hepatic steatosis. Only the HF-T and HF-TS groups had body weights similar to the SC group at the end of the experiment, and the latter treatment reversed hepatic steatosis. Increased PPAR-alpha immunostaining in parallel with higher GLUT-2 and reduced SREBP-1 expression may explain the favourable hepatic outcomes. Restoration of adipocyte size was consistent with higher adiponectin levels and lower TNF-alpha (tumour necrosis factor-alpha) levels (P<0.0001) in the drug-treated groups. In conclusion, all of the drug treatments were effective in controlling the metabolic syndrome. The best results were achieved using telmisartan and sitagliptin as monotherapies or as a dual treatment, combining partial PPAR-gamma agonism and PPAR-alpha activation in the liver with extended incretin action.
Toxicologic Pathology | 2004
Samuel Santos Valença; Katia da Hora; Paulo Castro; Vera Gonçalves Moraes; Laís de Carvalho; Luís Cristóvão Porto
Cigarette smoke (CS) causes pulmonary emphysema in humans and elastin degradation plays a key role in its pathogenesis. Previous studies on CS-exposed animals have been equivocal and have not clearly demonstrated the progression of the disease. In this study, morphometry was used to assess lung modifications to alveolar septa, airspaces, elastic and collagen fibers, and alveolar macrophages. Male (n = 40) C57/BL6 mice were exposed 3 times/day, whole body, to CS from three cigarettes for 10, 20, 30, or 60 days. Control groups (n = 10) were sham-smoked or received no exposure (day 0, n = 10). Morphometry included measurements of volume fraction of alveolar septa and airspaces, elastic and collagen fibers, and surface fraction of elastic fibers and alveolar septa. Morphometrical differences in mice after 60 days of exposure were greater than those after 10, 20, or 30 days, suggesting a progression of the disease. Inflammatory lesions in the lungs of mice contained significantly more metalloelastase (MMP-12) in macrophages at 10, 20, and 30 days than in controls of mice exposed for 60 days. These results suggest that elastin degradation took place during development of pulmonary changes in mice exposed to CS, and activation of MMPs specific for elastin may be a determining factor for susceptibility to emphysema.
Journal of Parasitology | 2008
Erick Vaz Guimarães; Laís de Carvalho
Toxoplasma gondii is a protozoan pathogen of birds and mammals, including humans. The infective stage, the bradyzoite, lives within cysts, which occur predominantly in cells of the central nervous system and skeletal and cardiac muscles, characterizing the chronic phase of toxoplasmosis. In the present study, we employed for the first time primary mouse culture of skeletal muscle cells (SkMC) infected with bradyzoites, as a cellular model for cystogenesis. The interconversion of bradyzoite and tachyzoite was analyzed by immunofluorescence using 2 stage-specific antibodies, i.e., anti-bradyzoite (anti-BAG1) and anti-tachyzoite (anti-SAG1). After 24 hr of interaction only bradyzoites were multiplying, as revealed by anti-BAG1 incubation; interconversion to tachyzoites was not observed. After 48 hr of infection, 2 types of vacuoles were seen, i.e., BAG1+ and SAG1+, indicating the presence of bradyzoites as well as their interconversion to tachyzoites. After 96 hr of infection, BAG1+ vacuoles presented a higher number of parasites when compared to 48 hr, indicating multiplication of bradyzoites without interconversion. Using ultrastructural analysis, bradyzoites were found to adhere to the cell membranes via both the apical and posterior regions or were associated with SkMC membrane expansions. During bradyzoite invasion of SkMC, migration of the rough endoplasmic reticulum (RER) profiles to the parasite invasion site was observed. Later, RER profiles were localized between the mitochondria and parasitophorous vacuole membrane (PVM) that contained the parasite. After 31 days of parasite-host cell infection, RER profiles and mitochondria were not observed in association with the cyst wall. Alterations of the PVM, including increased thickness and electrondensity gain on its inner membrane face, were observed 48 hr after infection. Cystogenesis was complete 96 hr after infection, resulting in the formation of the cyst wall, which displayed numerous membrane invaginations. In addition, an electron-dense granular region enriched with vesicles and tubules was present, as well as numerous intracystic bradyzoites. These results show that the in vitro T. gondii model and SkMC are potential tools for both the study of cystogenesis using molecular approaches and the drug screening action on tissue cysts and bradyzoites.
In Vitro Cellular & Developmental Biology – Animal | 2006
Renata Pereira; Simone Nunes de Carvalho; Ana Carolina Stumbo; Carlos Alberto Rodrigues; Luis Cristovóvão Porto; Anà bal Moura; Laís de Carvalho
SummarySkeletal fibroblasts in vitro can acquire myofibroblast phenotypes by the development of biochemical and morphological features, mainly the expression of alpha-smooth-muscle actin (α-SMA). Myogenic differentiation is a central event in skeletal muscle development, and has commonly been studied in vitro in the context of skeletal muscle development and regeneration. Controlling this process is a complex set of interactions between myoblasts and the extracellular matrix. Osteopontin (OPN) is an acidic, phosphorylated matrix protein that contains an Arg-Gly-Asp (RGD) cell attachment sequence and has been identified as an adhesive and migratory substrate for several cell types. The aim of this study was to investigate osteopontin expression during the differentiation of skeletal fibroblasts into myofibroblasts and during myogenesis in a coculture model. Fibroblasts and myoblasts were obtained from skeletal muscle of 18-d-old Wistar strain rat fetuses by enzymatic dissociation. At 1 and 9 d, cocultures were immunolabeled, and the cells were also separately subjected to Western blotting to analyze OPN expression. Our data using confocal microscopy showed that myoblasts displayed a strong staining for OPN and that this labeling was maintained after myotube differentiation. Conversely, during fibroblast differentiation into myofibroblasts, we observed a significant increase in OPN expression. The results obtained by immunolabeling were confirmed by Western blotting. We suggest that OPN is important mainly during early stages of myogenesis, facilitating myoblast fusion and differentiation, and that the increased expression of OPN in myofibroblasts might be related to its effects as a key cytokine regulating tissue repair and inflammation.
Memorias Do Instituto Oswaldo Cruz | 2009
Marialice da Fonseca Ferreira-da-Silva; Renata Mendonça Rodrigues; Elisabete Andrade; Laís de Carvalho; Uwe Gross; Carsten G. K. Lüder
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Parasites & Vectors | 2014
Alessandra Ferreira Gomes; Kelly Grace Magalhães; Renata Mendonça Rodrigues; Laís de Carvalho; Raphael Molinaro; Patricia T. Bozza
BackgroundThe interest in the mechanisms involved in Toxoplasma gondii lipid acquisition has steadily increased during the past few decades, but it remains not completely understood. Here, we investigated the biogenesis and the fate of lipid droplets (LD) of skeletal muscle cells (SkMC) during their interaction with T. gondii by confocal and electron microscopy. We also evaluated whether infected SkMC modulates the production of prostaglandin E2 (PGE2), cytokines interleukin-12 (IL-12) and interferon-gamma (INF-g), and also the cyclooxygenase-2 (COX-2) gene induction.MethodsPrimary culture of skeletal muscle cells were infected with tachyzoites of T. gondii and analysed by confocal microscopy for observation of LD. Ultrastructural cytochemistry was also used for lipid and sarcoplasmatic reticulum (SR) detection. Dosage of cytokines (IL-12 and INF-g) by ELISA technique and enzyme-linked immunoassay (EIA) for PGE2 measurement were employed. The COX-2 gene expression analysis was performed by real time reverse transcriptase polymerase chain reaction (qRT-PCR).ResultsWe demonstrated that T. gondii infection of SkMC leads to increase in LD number and area in a time course dependent manner. Moreover, the ultrastructural analysis demonstrated that SR and LD are in direct contact with parasitophorous vacuole membrane (PVM), within the vacuolar matrix, around it and interacting directly with the membrane of parasite, indicating that LD are recruited and deliver their content inside the parasitophorous vacuole (PV) in T. gondii-infected SkMC. We also observed a positive modulation of the production of IL-12 and IFN-g, increase of COX-2 mRNA levels in the first hour of T. gondii-SkMC interaction and an increase of prostaglandin E2 (PGE2) synthesis from 6 h up to 48 h of infection.ConclusionsTaken together, the close association between SR and LD with PV could represent a source of lipids as well as other nutrients for the parasite survival, and together with the increased levels of IL-12, INF-g and inflammatory indicators PGE2 and COX-2 might contribute to the establishment and maintenance of chronic phase of the T. gondii infection in muscle cell.
Journal of Parasitology | 2005
M. F. Ferreira-Silva; Erick Vaz Guimarães; Laís de Carvalho; R. M. Rodrigues
Tachyzoites of Toxoplasma gondii were located inside the nucleus of both skeletal muscle cells infected in vitro and peritoneal exudate cells collected from infected mouse in vivo. Ultrastructural analysis demonstrated that T. gondii invades the nucleus of host cells by the parasite apical region and with constriction of its body. We noted that the rhoptry, a secretory organelle of the parasite that is involved in the host cell invasion mechanism, was empty in the intranuclear T. gondii. The parasites were found in the nuclear matrix without evidence of the vacuolar membrane. Frequently, new parasites invaded host cell nucleus, which was already infected. The significance of this nuclear invasion could reflect an alternative route of T. gondii for its transitory survival or an escape mechanism from the host immune response during the in vivo infection (or both).
Memorias Do Instituto Oswaldo Cruz | 2003
Erick Vaz Guimarães; Laís de Carvalho
Ultrathin sections of tissue cysts isolated from the brain of Toxoplasma gondii infected mice were submitted to two different methodologies derived from the periodic acid - Schiffs reagent (PAS) technique. The use of osmium tetroxide vapor as a developing agent of the aldehyde oxidation to reveal polysaccharides with periodic acid resulted in positive reaction in amylopectin granules in bradyzoites, as well as in the wall and matrix of the cysts, with excellent increment of the ultrastructural morphology. This technique can be used for study of T. gondii-host cell intracellular cycle, the differentiation tachyzoite-bradyzoite, and also for the formation of cysts into the host cells.
Cell Biology International | 2008
Ana Carolina Stumbo; Erika Cortez; Carlos Alberto Rodrigues; Maria das Graças Henriques; Luís Cristóvão Porto; Laís de Carvalho
Toxoplasma gondii is an obligate intracellular pathogen, replicating only within a specialized membrane‐bounded cytoplasmic vacuole, the parasitophorous vacuole (PV), which interacts with host cell mitochondria. High mobility group box 1 (HMGB1), a known nuclear transcription factor, also may be involved in pathological conditions, whose function is to signal tissue damage. Using confocal microscopy, we have investigated the localization of HMGB1 and the mitochondria performance during interaction between human umbilical vein endothelial cells (HUVEC) and Toxoplasma. Immunofluorescence showed HMGB1 localization in HUVEC tubular mitochondria stained with Mito Tracker (MT). At 2 h post‐infection, MT labeled spherical structures scattered throughout the cytoplasm and HMGB1 were still present. After 24 h of infection, long and tubular structures were localized around PVs and were double labeled by MT and HMGB1, suggesting a structural reorganization of the mitochondria over a long period of infection. For the first time, these results show there is HMGB1 in HUVEC mitochondria and that this protein could be playing a part in mitochondrial DNA events which are important for fission and fusion processes reported here during HUVEC‐T. gondii infection.
Parasitology International | 2011
Moema A. Hausen; Rubem F. S. Menna-Barreto; Dalvaci C. Lira; Laís de Carvalho
Giardia lamblia is a pathogenic protozoan presenting as the main characteristic, the trophozoite capacity to adhere in host intestinal epithelium, infecting mammals, including humans. The clinical treatment of this disease is based on metronidazole (Mz) that acts as an alternative electron acceptor, and its reduction promotes DNA impairment. In veterinary treatment, one of the best options is pyrantel pamoate (Pm), which the mode of action has not elucidated yet. Different strategies for Giardia treatment have been explored to avoid side effects to the host. In this context, the efficiency of treatment combining drugs raise as an interesting alternative for protozoan diseases. Here, we evaluated in vitro synergic effect of Mz and Pm on trophozoites and on its adherence to IEC-6 cells. The treatment with Mz or Pm was effective on trophozoites, with IC(50)/24h values of 5.3±0.9 μM and 13.8±1.4 μM, respectively. The treatment of trophozoites with different combinations of Mz and Pm were also evaluated, as showed by fractional inhibitory concentration index (FICI) under 0.5 in all conditions tested, corresponding to the synergic effect. This synergic activity was also observed when the combinations of 5.3 μM Mz+0.4 μM Pm and 13.8 μM Pm+0.1 μM Mz induced a remarkable reduction in % adhesion (85-90% and 52-59%, respectively) and in number of adhered parasites per 100 cells. The low cytotoxicity to the host cells of the combinations, associated to the strong synergic potential of the combination, encourage us to further investigate its effect in in vivo models.