Laising Yen
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laising Yen.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Kalpana Kannan; Liguo Wang; Jianghua Wang; Michael Ittmann; Wei Li; Laising Yen
Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer.
Neuroscience | 1995
M.W. Jakowec; Laising Yen; Robert G. Kalb
In early postnatal life the acquisition of mature morphological and molecular features of motor neurons is influenced by synaptic activity within the spinal cord. Glutamatergic synaptic neurotransmission is believed to play a central role in this process. We hypothesize that the repertoire of glutamate receptors expressed by neurons in the young spinal cord differ from those expressed in adults and such receptors support activity-dependent developmental plasticity. To explore this idea, we used in situ hybridization histochemistry to determine the distribution, temporal expression, and potential subunit composition of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the developing rat spinal cord and compared these findings with those in adult rats. We find qualitative and quantitative changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit gene expression over the first month of postnatal life. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit genes GluR1, 2 and 4 are expressed at greater levels throughout the spinal cord of the neonate versus the adult animals. The developmental down-regulation is most pronounced for GluR1 transcripts, less for GluR2 and GluR4 transcripts, and minimal for GluR3 transcripts. Analysis of flip and flop splice variants of each subunit show that receptors expressed by adult motor neurons are potentially composed of the subunits GluR1 flop, GluR2 flip, GluR3 flip and flop, and GluR4 flip. In neonatal motor neuron all subunits are potentially expressed (except GluR2 flop) with quantitatively the dominent subunits being the flip splice variants of GluR1, 2 and 4. Receptors in the substantia gelatinosa undergo equally dramatic, developmentally independent changes. Changes in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit composition are likely to have an important effect on the electrophysiological properties of motor neurons and may form part of the molecular identity of neurons capable of undergoing activity-dependent developmental plasticity.
Biological Chemistry | 2007
Kristian H. Link; Lixia Guo; Tyler D. Ames; Laising Yen; Richard C. Mulligan; Ronald R. Breaker
Abstract Full-length hammerhead ribozymes were subjected to in vitro selection to identify variants that are allosterically regulated by theophylline in the presence of a physiologically relevant concentration of Mg2+. The population of allosteric ribozymes resulting from 15 rounds of in vitro selection yielded variants with observed rate constants (k obs) as high as 8 min-1 in the presence of theophylline and maximal k obs increases of up to 285-fold compared to rate constants measured in the absence of effector. The selected ribozymes have kinetic characteristics that are predicted to be sufficient for cellular gene control applications, but do not exhibit any activity in reporter gene assays. The inability of the engineered RNAs to control gene expression suggests that the in vitro and in vivo folding pathways of the RNAs are different. These results provide several key pieces of information that will aid in future efforts to engineer allosteric ribozymes for gene control applications.
PLOS ONE | 2010
Liguo Wang; Yuanxin Xi; Jun Yu; Liping Dong; Laising Yen; Wei Li
Deep sequencing of transcriptome (RNA-seq) provides unprecedented opportunity to interrogate plausible mRNA splicing patterns by mapping RNA-seq reads to exon junctions (thereafter junction reads). In most previous studies, exon junctions were detected by using the quantitative information of junction reads. The quantitative criterion (e.g. minimum of two junction reads), although is straightforward and widely used, usually results in high false positive and false negative rates, owning to the complexity of transcriptome. Here, we introduced a new metric, namely Minimal Match on Either Side of exon junction (MMES), to measure the quality of each junction read, and subsequently implemented an empirical statistical model to detect exon junctions. When applied to a large dataset (>200M reads) consisting of mouse brain, liver and muscle mRNA sequences, and using independent transcripts databases as positive control, our method was proved to be considerably more accurate than previous ones, especially for detecting junctions originated from low-abundance transcripts. Our results were also confirmed by real time RT-PCR assay. The MMES metric can be used either in this empirical statistical model or in other more sophisticated classifiers, such as logistic regression.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Kalpana Kannan; Cristian Coarfa; Pei Wen Chao; Liming Luo; Yan Wang; Amy E. Brinegar; Shannon M. Hawkins; Aleksandar Milosavljevic; Martin M. Matzuk; Laising Yen
Significance High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer and is typically detected only at advanced stages due to lack of effective early screening tools. Fusion genes are among the most cancer-specific signatures known and, when highly recurrent, they have the potential to serve as screening tools. Here we identified BCAM-AKT2 as a cancer-specific fusion gene present in 7% of HGSC tumors, a significant frequency in this highly heterogeneous disease. This fusion results in an aberrant kinase whose constant activity contributes to cancer formation. Thus, the BCAM-AKT2 fusion gene could be important for understanding and identifying clinically relevant subtypes of HGSC, and could be a novel therapeutic target for developing small-molecule drugs. High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC.
PLOS Genetics | 2014
Kalpana Kannan; Cristian Coarfa; Kimal Rajapakshe; Shannon M. Hawkins; Martin M. Matzuk; Aleksandar Milosavljevic; Laising Yen
Ovarian cancer is the fifth leading cause of cancer death in women. Almost 70% of ovarian cancer deaths are due to the high-grade serous subtype, which is typically detected only after it has metastasized. Characterization of high-grade serous cancer is further complicated by the significant heterogeneity and genome instability displayed by this cancer. Other than mutations in TP53, which is common to many cancers, highly recurrent recombinant events specific to this cancer have yet to be identified. Using high-throughput transcriptome sequencing of seven patient samples combined with experimental validation at DNA, RNA and protein levels, we identified a cancer-specific and inter-chromosomal fusion gene CDKN2D-WDFY2 that occurs at a frequency of 20% among sixty high-grade serous cancer samples but is absent in non-cancerous ovary and fallopian tube samples. This is the most frequent recombinant event identified so far in high-grade serous cancer implying a major cellular lineage in this highly heterogeneous cancer. In addition, the same fusion transcript was also detected in OV-90, an established high-grade serous type cell line. The genomic breakpoint was identified in intron 1 of CDKN2D and intron 2 of WDFY2 in patient tumor, providing direct evidence that this is a fusion gene. The parental gene, CDKN2D, is a cell-cycle modulator that is also involved in DNA repair, while WDFY2 is known to modulate AKT interactions with its substrates. Transfection of cloned fusion construct led to loss of wildtype CDKN2D and wildtype WDFY2 protein expression, and a gain of a short WDFY2 protein isoform that is presumably under the control of the CDKN2D promoter. The expression of short WDFY2 protein in transfected cells appears to alter the PI3K/AKT pathway that is known to play a role in oncogenesis. CDKN2D-WDFY2 fusion could be an important molecular signature for understanding and classifying sub-lineages among heterogeneous high-grade serous ovarian carcinomas.
Bioinformatics | 2013
Chia Chin Wu; Kalpana Kannan; Steven H. Lin; Laising Yen; Aleksandar Milosavljevic
SUMMARY Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on the theory of exon/domain shuffling. The model leads to a hypothesis that a fusion is more likely to be an oncogenic driver if its partner genes act like hubs in a network because the fusion mutation can deregulate normal functions of many other genes and their pathways. The hypothesis is supported by the observation that for most known cancer fusion genes, at least one of the fusion partners appears to be a hub in a network, and even for many fusions both partners appear to be hubs. Based on this model, we construct fusion centrality, a multi-gene-based network metric, and use it to score fusion drivers. We show that the fusion centrality outperforms other single gene-based methods. Specifically, the method successfully predicts most of 38 newly discovered fusions that had validated oncogenic importance. To our best knowledge, this is the first network-based approach for identifying fusion drivers. AVAILABILITY Matlab code implementing the fusion centrality method is available upon request from the corresponding authors.
Cancers | 2015
Kalpana Kannan; Gona Karimi Kordestani; Anika Galagoda; Cristian Coarfa; Laising Yen
High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. By analyzing the mRNA-seq reads from The Cancer Genome Atlas (TCGA), we uncovered a novel cancer-enriched chimeric RNA as the result of splicing between MUC1, a highly glycosylated transmembrane mucin, TRIM46, a tripartite motif containing protein, and KRTCAP2, a keratinocyte associated protein. Experimental analyses by RT-PCR (reverse transcription PCR) and Sanger sequencing using an in-house cohort of 59 HGSC patient tumors revealed a total of six MUC1-TRIM46-KRTCAP2 isoforms joined by different annotated splice sites between these genes. These chimeric isoforms are not detected in non-cancerous ovaries, yet are present in three out of every four HGSC patient tumors, a significant frequency given the exceedingly heterogeneous nature of this disease. Transfection of the cDNA of MUC1-TRIM46-KRTCAP2 isoforms in mammalian cells led to the translation of mutant MUC1 fusion proteins that are unglycosylated and cytoplasmically localized as opposed to the cell membrane, a feature resembling the tumor-associated MUC1. Because the parental MUC1 is overexpressed in 90% of HGSC tumors and has been proposed as a clinical biomarker and therapeutic target, the chimeric MUC1-TRIM46-KRTCAP2 isoforms identified in this report could represent significantly better MUC1 variants for the same clinical utilities.
Methods of Molecular Biology | 2009
Laising Yen; Brent R. Stockwell; Richard C. Mulligan
RNA cleavage is a catalytic reaction which defines many types of RNA processing events, including those of metabolite-sensing riboswitch, self-splicing introns, mRNA splicing, tRNA processing, polyA-cleavage, and various small ribozymes such as hairpin and hammerhead ribozyme. In this chapter, we describe a general methodology for developing a mammalian cell-based high-throughput screening assay useful for identifying small molecules capable of inhibiting RNA cleavage in mammalian cells. In the specific assay described, a plasmid DNA vector in which the expression of a luciferase reporter gene is controlled by hammerhead ribozyme cleavage was stably introduced into the human 293 cell line. Such a cell line enabled the rapid screening of chemical compound libraries and the identification of cell membrane-permeable inhibitory molecules capable of blocking ribozyme cleavage. The general strategy described later could in principle be adapted to identify small molecule inhibitors of many types of RNA cleavage reactions.
Abstracts: 11th Biennial Ovarian Cancer Research Symposium; September 12-13, 2016; Seattle, WA | 2017
Kalpana Kannan; Cristian Coarfa; Pei-Wen Chao; Liming Luo; Yan Wang; Amy E. Brinegar; Shannon M. Hawkins; Aleksandar Milosavljevic; Martin M. Matzuk; Laising Yen
High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Using high-throughput RNAseq, we identify a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient9s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. Citation Format: Kalpana Kannan, Cristian Coarfa, Pei-Wen Chao, Liming Luo, Yan Wang, Amy E. Brinegar, Shannon M. Hawkins, Aleksandar Milosavljevic, Martin M. Matzuk, and Laising Yen. A RECURRENT BCAM-AKT2 FUSION GENE LEADS TO A CONSTITUTIVELY ACTIVATED AKT2 FUSION KINASE IN HIGH-GRADE SEROUS OVARIAN CARCINOMA [abstract]. In: Proceedings of the 11th Biennial Ovarian Cancer Research Symposium; Sep 12-13, 2016; Seattle, WA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(11 Suppl):Abstract nr MIP-076.