Lajos Haracska
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lajos Haracska.
Nature | 2000
Robert E. Johnson; Washington Mt; Lajos Haracska; Satya Prakash; Louise Prakash
DNA lesions can often block DNA replication, so cells possess specialized low-fidelity, and often error-prone, DNA polymerases that can bypass such lesions and promote replication of damaged DNA. The Saccharomyces cerevisiae RAD30 and human hRAD30A encode Polη, which bypasses a cis–syn thymine–thymine dimer efficiently and accurately. Here we show that a related human gene, hRAD30B, encodes the DNA polymerase Polι, which misincorporates deoxynucleotides at a high rate. To bypass damage, Polι specifically incorporates deoxynucleotides opposite highly distorting or non-instructional DNA lesions. This action is combined with that of DNA polymerase Polζ, which is essential for damage-induced mutagenesis, to complete the lesion bypass. Polζ is very inefficient in inserting deoxynucleotides opposite DNA lesions, but readily extends from such deoxynucleotides once they have been inserted. Thus, in a new model for mutagenic bypass of DNA lesions in eukaryotes, the two DNA polymerases act sequentially: Polι incorporates deoxynucleotides opposite DNA lesions, and Polζ functions as a mispair extender.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Ildiko Unk; Ildiko Hajdu; Károly Fátyol; Barnabas Szakal; András Blastyák; Vladimir P. Bermudez; Jerard Hurwitz; Louise Prakash; Satya Prakash; Lajos Haracska
Human SHPRH gene is located at the 6q24 chromosomal region, and loss of heterozygosity in this region is seen in a wide variety of cancers. SHPRH is a member of the SWI/SNF family of ATPases/helicases, and it possesses a C3HC4 RING motif characteristic of ubiquitin ligase proteins. In both of these features, SHPRH resembles the yeast Rad5 protein, which, together with Mms2–Ubc13, promotes replication through DNA lesions via an error-free postreplicational repair pathway. Genetic evidence in yeast has indicated a role for Rad5 as a ubiquitin ligase in mediating the Mms2–Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Here we show that SHPRH is a functional homolog of Rad5. Similar to Rad5, SHPRH physically interacts with the Rad6–Rad18 and Mms2–Ubc13 complexes, and we show that SHPRH protein is a ubiquitin ligase indispensable for Mms2–Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Based on these observations, we predict a role for SHPRH in promoting error-free replication through DNA lesions. Such a role for SHPRH is consistent with the observation that this gene is mutated in a number of cancer cell lines, including those from melanomas and ovarian cancers, which raises the strong possibility that SHPRH function is an important deterrent to mutagenesis and carcinogenesis in humans.
DNA Repair | 2010
Ildiko Unk; Ildiko Hajdu; András Blastyák; Lajos Haracska
In the yeast Saccharomyces cerevisiae, the Rad6-Rad18 DNA damage tolerance pathway constitutes a major defense system against replication fork blocking DNA lesions. The Rad6-Rad18 ubiquitin-conjugating/ligase complex governs error-free and error-prone translesion synthesis by specialized DNA polymerases, as well as an error-free Rad5-dependent postreplicative repair pathway. For facilitating replication through DNA lesions, translesion synthesis polymerases copy directly from the damaged template, while the Rad5-dependent damage tolerance pathway obtains information from the newly synthesized strand of the undamaged sister duplex. Although genetic data demonstrate the importance of the Rad5-dependent pathway in tolerating DNA damages, there has been little understanding of its mechanism. Also, the conservation of the yeast Rad5-dependent pathway in higher order eukaryotic cells remained uncertain for a long time. Here we summarize findings published in recent years regarding the role of Rad5 in promoting error-free replication of damaged DNA, and we also discuss results obtained with its human orthologs, HLTF and SHPRH.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Zhihao Zhuang; Robert E. Johnson; Lajos Haracska; Louise Prakash; Satya Prakash; Stephen J. Benkovic
To ensure efficient and timely replication of genomic DNA, organisms in all three kingdoms of life possess specialized translesion DNA synthesis (TLS) polymerases (Pols) that tolerate various types of DNA lesions. It has been proposed that an exchange between the replicative DNA Pol and the TLS Pol at the site of DNA damage enables lesion bypass to occur. However, to date the molecular mechanism underlying this process is not fully understood. In this study, we demonstrated in a reconstituted system that the exchange of Saccharomyces cerevisiae Polδ with Polη requires both the stalling of the holoenzyme and the monoubiquitination of proliferating cell nuclear antigen (PCNA). A moving Polδ holoenzyme is refractory to the incoming Polη. Furthermore, we showed that the Polη C-terminal PCNA-interacting protein motif is required for the exchange process. We also demonstrated that the second exchange step to bring back Polδ is prohibited when Lys-164 of PCNA is monoubiquitinated. Thus the removal of the ubiquitin moiety from PCNA is likely required for the reverse exchange step after the lesion bypass synthesis by Polη.
Nature Chemical Biology | 2010
Junjun Chen; Yongxing Ai; Jialiang Wang; Lajos Haracska; Zhihao Zhuang
The rapid growth in ubiquitin biology requires facile chemical approaches for protein ubiquitylation that can overcome the common problem of low yield faced by the enzymatic reaction catalyzed by ubiquitin ligases. We report a chemical approach for monoubiquitylation and SUMOylation of PCNA through disulfide exchange and intein chemistry. We used the chemically ubiquitylated and SUMOylated PCNAs in studying translesion DNA synthesis and revealed a surprising degree of flexibility of the ubiquitin modification.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Narottam Acharya; Jung Hoon Yoon; Himabindu Gali; Ildiko Unk; Lajos Haracska; Robert E. Johnson; Jerard Hurwitz; Louise Prakash; Satya Prakash
Treatment of yeast and human cells with DNA-damaging agents elicits Rad6–Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA) at its Lys-164 residue [ubiquitin (Ub)-PCNA], and this PCNA modification is indispensable for promoting the access of translesion synthesis (TLS) polymerases (Pols) to PCNA. However, the means by which K164-linked Ub modulates the proficiency of TLS Pols to bind PCNA and take over synthesis from the replicative Pol has remained unclear. One model that has gained considerable credence is that the TLS Pols bind PCNA at 2 sites, to the interdomain connector loop via their PCNA-interacting protein (PIP) domain and to the K164-linked Ub moiety via their Ub-binding domain (UBD). Specifically, this model postulates that the UBD-mediated binding of TLS Pols to the Ub moiety on PCNA is necessary for TLS. To test the validity of this model, we examine the contributions that the PIP and Ub-binding zinc finger (UBZ) domains of human Polη make to its functional interaction with PCNA, its colocalization with PCNA in replication foci, and its role in TLS in vivo. We conclude from these studies that the binding to PCNA via its PIP domain is a prerequisite for Polηs ability to function in TLS in human cells and that the direct binding of the Ub moiety on PCNA via its UBZ domain is not required. We discuss the possible role of the Ub moiety on PCNA in TLS.
Nucleic Acids Research | 2006
Peter Burkovics; Valeria Szukacsov; Ildiko Unk; Lajos Haracska
DNA damage, such as abasic sites and DNA strand breaks with 3′-phosphate and 3′-phosphoglycolate termini present cytotoxic and mutagenic threats to the cell. Class II AP endonucleases play a major role in the repair of abasic sites as well as of 3′-modified termini. Human cells contain two class II AP endonucleases, the Ape1 and Ape2 proteins. Ape1 possesses a strong AP-endonuclease activity and weak 3′-phosphodiesterase and 3′–5′ exonuclease activities, and it is considered to be the major AP endonuclease in human cells. Much less is known about Ape2, but its importance is emphasized by the growth retardation and dyshematopoiesis accompanied by G2/M arrest phenotype of the APE2-null mice. Here, we describe the biochemical characteristics of human Ape2. We find that Ape2 exhibits strong 3′–5′ exonuclease and 3′-phosphodiesterase activities and has only a very weak AP-endonuclease activity. Mutation of the active-site residue Asp 277 to Ala in Ape2 inactivates all these activities. We also demonstrate that Ape2 preferentially acts at mismatched deoxyribonucleotides at the recessed 3′-termini of a partial DNA duplex. Based on these results we suggest a novel role for human Ape2 as a 3′–5′ exonuclease.
Molecular and Cellular Biology | 2009
Jacob G. Jansen; Anastasia Tsaalbi-Shtylik; Giel Hendriks; Himabindu Gali; Ayal Hendel; Fredrik Johansson; Klaus Erixon; Zvi Livneh; L.H.F. Mullenders; Lajos Haracska; Niels de Wind
ABSTRACT The Y family DNA polymerase Rev1 has been proposed to play a regulatory role in the replication of damaged templates. To elucidate the mechanism by which Rev1 promotes DNA damage bypass, we have analyzed the progression of replication on UV light-damaged DNA in mouse embryonic fibroblasts that contain a defined deletion in the N-terminal BRCT domain of Rev1 or that are deficient for Rev1. We provide evidence that Rev1 plays a coordinating role in two modes of DNA damage bypass, i.e., an early and a late pathway. The cells carrying the deletion in the BRCT domain are deficient for the early pathway, reflecting a role of the BRCT domain of Rev1 in mutagenic translesion synthesis. Rev1-deficient cells display a defect in both modes of DNA damage bypass. Despite the persistent defect in the late replicational bypass of fork-blocking (6-4)pyrimidine-pyrimidone photoproducts, overall replication is not strongly affected by Rev1 deficiency. This results in almost completely replicated templates that contain gaps encompassing the photoproducts. These gaps are inducers of DNA damage signaling leading to an irreversible G2 arrest. Our results corroborate a model in which Rev1-mediated DNA damage bypass at postreplicative gaps quenches irreversible DNA damage responses.
Molecular and Cellular Biology | 2004
M. Todd Washington; Irina G. Minko; Robert E. Johnson; Lajos Haracska; Thomas M. Harris; R. Stephen Lloyd; Satya Prakash; Louise Prakash
ABSTRACT Rev1, a member of the Y family of DNA polymerases, functions in lesion bypass together with DNA polymerase ζ (Polζ). Rev1 is a highly specialized enzyme in that it incorporates only a C opposite template G. While Rev1 plays an indispensable structural role in Polζ-dependent lesion bypass, the role of its DNA synthetic activity in lesion bypass has remained unclear. Since interactions of DNA polymerases with the DNA minor groove contribute to the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, here we examine the possibility that unlike other DNA polymerases, Rev1 does not come into close contact with the minor groove of the incipient base pair, and that enables it to incorporate a C opposite the N2-adducted guanines in DNA. To test this idea, we examined whether Rev1 could incorporate a C opposite the γ-hydroxy-1,N 2-propano-2′deoxyguanosine DNA minor-groove adduct, which is formed from the reaction of acrolein with the N 2 of guanine. Acrolein, an α,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from other oxidation reactions. We show here that Rev1 efficiently incorporates a C opposite this adduct from which Polζ subsequently extends, thereby completing the lesion bypass reaction. Based upon these observations, we suggest that an important role of the Rev1 DNA synthetic activity in lesion bypass is to incorporate a C opposite the various N 2-guanine DNA minor-groove adducts that form in DNA.
Molecular and Cellular Biology | 2005
Narottam Acharya; Lajos Haracska; Robert E. Johnson; Ildiko Unk; Satya Prakash; Louise Prakash
ABSTRACT The Rev1 protein of Saccharomyces cerevisiae functions in translesion synthesis (TLS) together with DNA polymerase (Pol) ζ, which is comprised of the Rev3 catalytic and the Rev7 accessory subunits. Rev1, a member of the Y family of Pols, differs from other members in its high degree of specificity for incorporating a C opposite template G as well as opposite an abasic site. Although Rev1 is indispensable for Polζ-dependent TLS, its DNA synthetic activity is not required for many of the Polζ-dependent lesion bypass events. This observation has suggested a structural role for Rev1 in this process. Here we show that in yeast, Rev1 forms a stable complex with Rev7, and the two proteins copurify. Importantly, the polymerase-associated domain (PAD) of Rev1 mediates its binding to Rev7. These observations reveal a novel role for the PAD region of Rev1 in protein-protein interactions, and they raise the possibility of a similar involvement of the PAD of other Y family Pols in protein-protein interactions. We discuss the possible roles of Rev1 versus the Rev1-Rev7 complex in TLS.