Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lakkyong Hwang is active.

Publication


Featured researches published by Lakkyong Hwang.


International Journal of Molecular Medicine | 2013

Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus.

Lakkyong Hwang; In-Young Choi; Sung-Eun Kim; Il-Gyu Ko; Mal-Soon Shin; Chang-Ju Kim; Sang Hoon Kim; Jun-Jang Jin; Jun-Young Chung; Jae-Woo Yi

Intracerebral hemorrhage (ICH) is a severe type of stroke causing neurological dysfunction with a high mortality rate. Dexmedetomidine is an agonist for α2‑adrenoreceptors with sedative, anxiolytic, analgesic and anesthetic effects. In the present study, we investigated the effects of dexmedetomidine on short‑term and spatial learning memory, as well as its effects on apoptosis following the induction of ICH in rats. A rat model of IHC was created by an injection of collagenase into the hippocampus using a stereotaxic instrument. Dexmedetomidine was administered intraperitoneally daily for 14 consecutive days, commencing 1 day after the induction of ICH. The step‑down avoidance test for short‑term memory and the radial 8‑arm maze test for spatial learning memory were conducted. Terminal deoxynucleotidyl transferase‑mediated dUTP nick end-labeling (TUNEL) assay, immunohistochemistry for caspase‑3, and western blot analysis for Bcl‑2, Bax, Bid and caspase-3 expression were performed for the detection of apoptosis in the hippocampus. Western blot analysis for the brain‑derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was also performed for the detection of cell survival in the hippocampus. The induction of ICH deteriorated short‑term and spatial learning memory, increased apoptosis and suppressed BDNF and TrkB expression in the hippocampus. Treatment with dexmedetomidine ameliorated the ICH‑induced impairment of short‑term and spatial learning memory by suppressing apoptosis and enhancing BDNF and TrkB expression. In the normal rats, dexmedetomidine exerted no significant effects on memory function and apoptosis. The present results suggest the possibility that dexmedetomidine may be used as a therapeutic agent for the conservation of memory function in stroke patients.


Journal of Biomedical Science | 2013

An animal study to compare the degree of the suppressive effects on the afferent pathways of micturition between tamsulosin and sildenafil

Sung-Eun Kim; Il-Gyu Ko; Lakkyong Hwang; In-Young Choi; Mal-Soon Shin; Chang-Ju Kim; Khae Hawn Kim

BackgroundTamsulosin, an α1-adrenoceptor antagonist, and sildenafil, a phosphodiesterase (PDE) inhibitor, are reported to improve lower urinary tract symptoms including overactive bladder (OAB). This study is aimed at investing the effects of tamsulosin and sildenafil and comparing the degree of the suppressive effects on the afferent pathways of micturition between them using an animal model of OAB, the spontaneously hypertensive rat (SHR).ResultsThe cystometric parameters, the basal pressure and duration of bladder contraction, were significantly increased in the SHR group as compared with the Wistar-Kyoto (WKY) group. The intercontraction interval also significantly decreased in the SHR group. In the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group, however, the basal pressure and duration were significantly reduced and the intercontraction interval was significantly prolonged. Moreover, the degree of the expression of c-Fos and NGF was significantly higher in the SHR group as compared with the WKY group. But it was significantly reduced in the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group. Furthermore, tamsulosin had a higher degree of effect as compared with sildenafil.ConclusionsIn conclusion, α1-adrenergic receptor antagonists and PDE-5 inhibitors may have an effect in improving the voiding functions through an inhibition of the neuronal activity in the afferent pathways of micturition.


Experimental and Therapeutic Medicine | 2017

Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils

In-Young Choi; Lakkyong Hwang; Jun Jang Jin; Il Gyu Ko; Sung Eun Kim; Mal Soon Shin; Key‑Moon Shin; Chang-Ju Kim; Sung Wook Park; Jin Hee Han; Jae‑Woo Yi

Cerebral ischemia results from cerebrovascular occlusion, which leads to neuronal cell death and eventually causes neurological impairments. Dexmedetomidine is a potent and highly selective α2-adrenoreceptor agonist with actions such as sedation, anxiolysis, analgesia and anesthetic-sparing effects. We investigated the effect of dexmedetomidine on apoptosis in the hippocampus after transient global ischemia in gerbils. Transient global ischemia was induced by ligation of both common carotid arteries. Dexmedetomidine was administrated intraperitoneally at three respective doses (0.1, 1 and 10 µg/kg) once per day for 14 consecutive days beginning a day after surgery. Short-term memory was assessed by use of a step-down avoidance task. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay, immunohistochemistry for caspase-3, and western blot analysis of Bcl-2-associated X protein, B-cell lymphoma 2, Bid, cytochrome c, apoptotic protease activating factor-1 and caspase-9 in the hippocampus. Induction of global ischemia deteriorated short-term memory by enhancing the expression of apoptosis-related molecules in the hippocampus. Treatment with dexmedetomidine suppressed the expression of apoptosis-related molecules under ischemic conditions, resulting in short-term memory improvement. Under normal conditions, dexmedetomidine exerted no significant effect on apoptosis in the hippocampus. The present results suggest that the α2-adrenoceptor agonist dexmedetomidine may be a useful therapeutic agent for the treatment of ischemic brain diseases.


Journal of exercise rehabilitation | 2016

Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils

Sang-Hak Lee; Il-Gyu Ko; Sung-Eun Kim; Lakkyong Hwang; Jun-Jang Jin; Hyun-Hee Choi; Chang-Ju Kim

Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2′-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury.


International Journal of Molecular Sciences | 2017

Polydeoxyribonucleotide Ameliorates Lipopolysaccharide-Induced Lung Injury by Inhibiting Apoptotic Cell Death in Rats

Jin An; So Park; Il-Gyu Ko; Jun-Jang Jin; Lakkyong Hwang; Eun-Sang Ji; Sang Hoon Kim; Chang-Ju Kim; Jae-Joon Hwang; Cheon Woong Choi

Lung injury is characterized by diffuse lung inflammation, alveolar-capillary destruction, and alveolar flooding, resulting in respiratory failure. Polydexyribonucleotide (PDRN) has an anti-inflammatory effect, decreasing inflammatory cytokines, and suppressing apoptosis. Thus, we investigated its efficacy in the treatment of lung injury, which was induced in rats using lipopolysaccharide (LPS). Rats were randomly divided into three groups according to sacrifice time, and each group split into control, lung injury-induced, and lung injury-induced + PDRN-treated groups. Rats were sacrificed 24 h and 72 h after PDRN administration, according to each group. Lung injury was induced by intratracheal instillation of LPS (5 mg/kg) in 0.2 mL saline. Rats in PDRN-treated groups received a single intraperitoneal injection of 0.3 mL distilled water including PDRN (8 mg/kg), 1 h after lung injury induction. Percentages of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, cleaved caspase-3-, -8-, and -9-positive cells, the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2), and expressions of inflammatory cytokines (tumor necrosis factor-α, interleukin-6) were decreased by PDRN treatment in the LPS-induced lung injury rats. Therefore, treatment with PDRN reduced lung injury score. This anti-apoptotic effect of PDRN can be ascribed to the enhancing effect of PDRN on adenosine A2A receptor expression. Based on these results, PDRN might be considered as a new therapeutic agent for the treatment of lung injury.


International Neurourology Journal | 2017

Dexmedetomidine Oral Mucosa Patch for Sedation Suppresses Apoptosis in Hippocampus of Normal Rats

Je Hoon Park; Il Gyu Ko; Sung Eun Kim; Jun Jang Jin; Lakkyong Hwang; Chang-Ju Kim; Soo Hwan Yoon; Jongki Hong; Jun Young Chung; Deok Won Lee

Purpose Dexmedetomidine, an α2-adrenergic agonist, provides sedative and analgesic effects without significant respiratory depression. Dexmedetomidine has been suggested to have an antiapoptotic effect in response to various brain insults. We developed an oral mucosa patch using dexmedetomidine for sedation. The effects of the dexmedetomidine oral mucosa patch on cell proliferation and apoptosis in the hippocampus were evaluated. Methods A hydrogel oral mucosa patch was adhered onto the oral cavity of physiologically normal rats, and was attached for 2 hours, 6 hours, 12 hours, or 24 hours. Plasma dexmedetomidine concentrations were determined by liquid chromatography– electrospray ionization–tandem mass spectrometry–multiple-ion reaction monitoring (LC-ESI-MS/MS-MRM). Cell proliferation in the hippocampus was detected by Ki-67 immunohistochemistry. Caspase-3 immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and Western blotting for Bax and Bcl-2 were performed to detect hippocampal apoptosis. The levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the hippocampus were also measured by Western blotting. Results Plasma dexmedetomidine concentration increased according to the attachment time of the dexmedetomidine oral mucosa patch. Hippocampal cell proliferation did not change due to the dexmedetomidine oral mucosa patch, and the dexmedetomidine oral mucosa patch exerted no significant effect on BDNF or TrkB expression. In contrast, the dexmedetomidine oral mucosa patch exerted an antiapoptotic effect depending on the attachment time of the dexmedetomidine oral mucosa patch. Conclusions A dexmedetomidine oral mucosa patch can be used as a convenient tool for sedation, and is of therapeutic value due to its antiapoptotic effects under normal conditions.


International Neurourology Journal | 2016

Effects of Combination Treatment of Alpha 1-Adrenergic Receptor Antagonists on Voiding Dysfunction: Study on Target Organs in Overactive Bladder Rats

Il Gyu Ko; Bo Min Moon; Sung Eun Kim; Jun Jang Jin; Lakkyong Hwang; Eun Sang Ji; Chang-Ju Kim; Tai Hyung Kim; Hyun Hee Choi; Kyung Jin Chung

Purpose Overactive bladder (OAB) causes urinary urgency, usually accompanied by frequency and nocturia. Alpha 1-adrenergic receptor (α1-AR) antagonists are known to improve lower urinary tract symptoms associated with OAB. The α1-AR antagonists constitute a variety of drugs according to the receptor subtype affinity. This study investigated the efficacy of tamsulosin, naftopidil, and a combination of the two on OAB rats. Methods The OAB rat model was induced by an intraperitoneal injection of cyclophosphamide for 14 days. The experimental groups were divided into 5 groups: control group, OAB-induction group, OAB-induction and tamsulosin monotherapy group, OAB-induction and naftopidil monotherapy group, and OAB-induction and tamsulosin-naftopidil combination therapy group. For the drug-treated groups, each drug was administrated for 14 days after the OAB induction. Cystometry for urodynamic evaluation and immunohistochemical stain for c-Fos and nerve growth factor (NGF) expressions in the central micturition centers were performed. Results Increased contraction pressure and time with enhanced c-Fos and NGF expressions in the central micturition centers were found in the OAB rats. Tamsulosin suppressed contraction pressure and time while inhibiting c-Fos and NGF expressions. Naftopidil showed no significant effect and combination therapy showed less of an effect on contraction pressure and time. Naftopidil and combination therapy exerted no significant effect on the c-Fos and NGF expressions. Conclusions Tamsulosin showed the most prominent efficacy for the treatment of OAB compared to the naftopidil and combination. The combination of tamsulosin with naftopidil showed no synergistic effects on OAB; however, further studies of addon therapy might provide opportunities to find a new modality.


Journal of exercise rehabilitation | 2017

Age-dependent differences of treadmill exercise on spatial learning ability between young- and adult-age rats

Jun-Jang Jin; Il-Gyu Ko; Sung-Eun Kim; Lakkyong Hwang; Man-Gyoon Lee; Dae-Young Kim; Sun-Young Jung

The effect of exercise, which increases hippocampal neurogenesis and improves memory function, is well documented, however, differences in the effect of exercise on young children and adults are not yet known. In the present study, age-dependent differences of treadmill exercise on spatial learning ability between young- and adult-age rats were investigated. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 6 weeks. Radial 8-arm maze test was conducted for the determination of spatial learning ability. Cell proliferation in the hippocampal dentate gyrus was determined by 5-bromo-2′-deoxyuridine immunohistochemistry. Western blot for brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was performed. In the present study, the number of errors in the young-age rats was effectively decreased by treadmill exercise. Hippocampal neurogenesis was more active in the young-age rats than in the adult-age rats. BDNF and TrkB expression in the hippocampus was greater in the adult-age rats than in the young-age rats. The results of this study showed that adults have excellent spatial learning abilities than children, but the improvement of exercise-induced spatial learning ability through neurogenesis is better in children.


Life Sciences | 2018

Combination therapy with polydeoxyribonucleotide and proton pump inhibitor enhances therapeutic effectiveness for gastric ulcer in rats

Il-Gyu Ko; Sung-Eun Kim; Jun-Jang Jin; Lakkyong Hwang; Eun-Sang Ji; Chang-Ju Kim; Jin-Hee Han; In Taik Hong; Min Seop Kwak; Jin Young Yoon; Hyun Phil Shin; Jung Won Jeon

Aims: The main action of proton pump inhibitors (PPIs) is to inhibit gastric acid secretion, and PPIs are widely used to treat gastric ulcer (GU). However, if the action of promoting gastric mucosal regeneration is added, the effectiveness of GU treatment can be enhanced. Thus, in order to improve the therapeutic effect on GU, we tried to develop combination therapy promoting regeneration in injured tissue besides suppressing gastric acid secretion. Main methods: Polydeoxyribonucleotide (PDRN) was selected to evaluate tissue regeneration, and pantoprazole was chosen as one of the PPIs. GU was induced by oral administration of indomethacin once a day for 7 days. Rats in drug‐administered groups were intraperitoneally injected with 100 &mgr;L normal saline, containing each drug at the indicated concentration, once a day for 14 days after inducing GU. Key findings: PDRN and PPI combination therapy potently improved tissue regeneration and inhibited production of pro‐inflammatory cytokines. PDRN treatment with or without PPI increased the concentration of cyclic adenosine‐3,5′‐monophosphate (cAMP) and the ratio of phosphorylated cAMP response element‐binding protein (p‐CREB) to cAMP response element‐binding protein (CREB). PDRN treatment with or without PPI also increased the expressions of vascular endothelial growth factor (VEGF) and adenosine A2A receptor. Significance: PDRN and PPI combination therapy showed more potent therapeutic effect on GU compared to the PDRN monotherapy or PPI monotherapy. The excellent therapeutic effect of PDRN and PPI combination therapy on GU appeared by promoting regeneration of damaged tissue as well as inhibiting gastric acid secretion. Graphical abstract: Figure. No caption available.


Journal of exercise rehabilitation | 2018

Late starting treadmill exercise improves spatial leaning ability through suppressing CREP/BDNF/TrkB signaling pathway following traumatic brain injury in rats

Il-Gyu Ko; Sung-Eun Kim; Lakkyong Hwang; Jun-Jang Jin; Chang-Ju Kim; Bo-Kyun Kim; Hong Kim

Traumatic brain injury (TBI) causes deficit in spatial learning and memory function. Physical activity ameliorates neurological dysfunction after TBI. We investigated the effect of late starting treadmill exercise on spatial learning ability in relation with cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway using TBI rats. For this study, radial 8-arm maze test, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) staining, caspase-3 immunohistochemistry, and western blot for Bax, Bcl-2, BDNF, tyrosine kinase B (TrkB), CREB, and phosphorylated CREP (p-CREB) were performed. TBI was induced by an electromagnetic-controlled cortical impact. The rats in the exercise groups were scheduled to run on a treadmill for 30 min once a day for 8 weeks starting 3 weeks after TBI. TBI impaired spatial learning ability and increased caspase-3 expression in the hippocampal dentate gyrus. TBI enhanced Bax expression and suppressed Bcl-2 expression in the hip-pocampus. TBI increased BDNF and TrkB expressions, resulted in the enhancement of p-CREB/CREB ratio in the hippocampus. However, treadmill exercise improved spatial learning ability, decreased caspase-3 expression, suppressed Bax expression, and increased Bcl-2 expression. Treadmill exercise alleviated TBI-induced over-expression of BDNF and TrkB, which suppressed phosphorylation of CREB in the hippocampus. In the present study, late starting treadmill exercise improved spatial learning ability through suppressing TBI-induced activation of CREB/BDNF/TrkB signaling pathway after TBI.

Collaboration


Dive into the Lakkyong Hwang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge