Lakshman Gunaratnam
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lakshman Gunaratnam.
Journal of Clinical Investigation | 2008
Takaharu Ichimura; Edwin J.P.v. Asseldonk; Benjamin D. Humphreys; Lakshman Gunaratnam; Jeremy S. Duffield; Joseph V. Bonventre
Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule-1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1-expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes.
Cancer Research | 2005
Karlene Smith; Lakshman Gunaratnam; Melissa Morley; Aleksandra Franovic; Karim Mekhail; Stephen Lee
Inactivating mutations in the von Hippel-Lindau (VHL) tumor suppressor gene are associated with clear cell renal cell carcinoma (VHL-/- RCC), the most frequent malignancy of the human kidney. The VHL protein targets the alpha subunits of hypoxia-inducible factor (HIF) transcription factor for ubiquitination and degradation. VHL-/- RCC cells fail to degrade HIF resulting in the constitutive activation of its target genes, a process that is required for tumorigenesis. We recently reported that HIF activates the transforming growth factor-alpha/epidermal growth factor receptor (TGF-alpha/EGFR) pathway in VHL-defective RCC cells. Here, we show that short hairpin RNA (shRNA)-mediated inhibition of EGFR is sufficient to abolish HIF-dependent tumorigenesis in multiple VHL-/- RCC cell lines. The 2alpha form of HIF (HIF-2alpha), but not HIF-1alpha, drives in vitro and in vivo tumorigenesis of VHL-/- RCC cells by specifically activating the TGF-alpha/EGFR pathway. Transient incubation of VHL-/- RCC cell lines with small interfering RNA directed against EGFR prevents autonomous growth in two-dimensional culture as well as the ability of these cells to form dense spheroids in a three-dimensional in vitro tumor assay. Stable expression of shRNA against EGFR does not alter characteristics associated with VHL loss including constitutive production of HIF targets and defects in fibronectin deposition. In spite of this, silencing of EGFR efficiently abolishes in vivo tumor growth of VHL loss RCC cells. These data identify EGFR as a critical determinant of HIF-2alpha-dependent tumorigenesis and show at the molecular level that EGFR remains a credible target for therapeutic strategies against VHL-/- renal carcinoma.
Nature Cell Biology | 2004
Karim Mekhail; Lakshman Gunaratnam; Marie Eve Bonicalzi; Stephen Lee
Hypoxia and acidosis occur in a wide variety of physiological and pathological settings that include muscle stress, tumour development and ischaemic disorders. A central element in the adaptive response to cellular hypoxia is HIF (hypoxia-inducible factor), a transcription factor that activates an array of genes implicated in oxygen homeostasis, tumour vascularization and ischaemic preconditioning. HIF is activated by hypoxia, but undergoes degradation by the VHL (von Hippel-Lindau) tumour suppressor protein in the presence of oxygen. Here, we demonstrate that hypoxia induction or normoxic acidosis can neutralize the function of VHL by triggering its nucleolar sequestration, a regulatory mechanism of protein function that is observed rarely. VHL is confined to nucleoli until neutral pH conditions are re-instated. Nucleolar sequestration of VHL enables HIF to evade destruction in the presence of oxygen and activate its target genes. Our findings suggest that an increase in hydrogen ions elicits a transient and reversible loss of VHL function by promoting its nucleolar sequestration.
Journal of Biological Chemistry | 2003
Lakshman Gunaratnam; Melissa Morley; Aleksandra Franovic; Natalie de Paulsen; Karim Mekhail; Doris A E Parolin; Eijiro Nakamura; Ian Lorimer; Stephen Lee
Bi-allelic-inactivating mutations of the VHL tumor suppressor gene are found in the majority of clear cell renal cell carcinomas (VHL-/- RCC). VHL-/- RCC cells overproduce hypoxia-inducible genes as a consequence of constitutive, oxygen-independent activation of hypoxia inducible factor (HIF). While HIF activation explains the highly vascularized nature of VHL loss lesions, the relative role of HIF in oncogenesis and loss of growth control remains unknown. Here, we report that HIF plays a central role in promoting unregulated growth of VHL-/- RCC cells by activating the transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGF-R) pathway. Dominant-negative HIF and enzymatic inhibition of EGF-R were equally efficient at abolishing EGF-R activation and serum-independent growth of VHL-/- RCC cells. TGF-α is the only known EGF-R ligand that has a VHL-dependent expression profile and its overexpression by VHL-/- RCC cells is a direct consequence of HIF activation. In contrast to TGF-α, other HIF targets, including vascular endothelial growth factor (VEGF), were unable to stimulate serum-independent growth of VHL-/- RCC cells. VHL-/- RCC cells expressing reintroduced type 2C mutants of VHL, and which retain the ability to degrade HIF, fail to overproduce TGF-α and proliferate in serum-free media. These data link HIF with the overproduction of a bona fide renal cell mitogen leading to activation of a pathway involved in growth of renal cancer cells. Moreover, our results suggest that HIF might be involved in oncogenesis to a much higher extent than previously appreciated.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Aleksandra Franovic; Lakshman Gunaratnam; Karlene Smith; Isabelle Robert; David A. Patten; Stephen Lee
Overexpression of the EGF receptor (EGFR) is a recurrent theme in human cancer and is thought to cause aggressive phenotypes and resistance to standard therapy. There has, thus, been a concerted effort in identifying EGFR gene mutations to explain misregulation of EGFR expression as well as differential sensitivity to anti-EGFR drugs. However, such genetic alterations have proven to be rare occurrences in most types of cancer, suggesting the existence of a more general physiological trigger for aberrant EGFR expression. Here, we provide evidence that overexpression of wild-type EGFR can be induced by the hypoxic microenvironment and activation of hypoxia-inducible factor 2-α (HIF2α) in the core of solid tumors. Our data suggest that hypoxia/HIF2α activation represents a common mechanism for EGFR overexpression by increasing EGFR mRNA translation, thereby diminishing the necessity for gene mutations. This allows for the accumulation of elevated EGFR levels, increasing its availability for the autocrine signaling required for tumor cell growth autonomy. Taken together, our findings provide a nonmutational explanation for EGFR overexpression in human tumors and highlight a role for HIF2α activation in the regulation of EGFR protein synthesis.
Journal of The American Society of Nephrology | 2009
Lakshman Gunaratnam; Joseph V. Bonventre
Tissue hypoxia is a pathologic feature of many human diseases including cancer, myocardial infarction, stroke, and kidney disease. An evolutionarily conserved oxygen-sensing mechanism enables cells to adapt and maintain homeostasis under hypoxic conditions by transcriptional activation of a host of genes that mediate metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, and cell survival. The hypoxia-inducible factors (HIFs) comprise a family of oxygen-sensitive basic helix-loop-helix proteins that control the cellular transcriptional response to hypoxia. Inappropriate activation of the HIF system is linked to the development and/or progression of many human malignancies including clear cell renal cancer. HIFs are now postulated to play contrasting protective and pathogenic roles in acute and chronic kidney diseases, respectively. In this review, we discuss the mechanisms of oxygen sensing in renal cells and highlight the role of hypoxia and HIF activation under physiologic conditions and in renal development as well as in acute and chronic kidney diseases.
Journal of Cell Biology | 2005
Karim Mekhail; Mireille Khacho; Amanda Carrigan; Robert R.J. Hache; Lakshman Gunaratnam; Stephen Lee
Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHLs β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.
Cancer Research | 2006
Aleksandra Franovic; Isabelle Robert; Karlene Smith; Ghada Kurban; Arnim Pause; Lakshman Gunaratnam; Stephen Lee
Malignancy is a manifestation of acquired defects in regulatory circuits that direct normal cell proliferation and homeostasis. Most of these circuits operate through cell autonomous pathways, whereas others potentially involve the neighboring microenvironment. We report that the metalloprotease ADAM17 plays a pivotal role in several acquired tumor cell capabilities by mediating the availability of soluble transforming growth factor-alpha, an epidermal growth factor receptor (EGFR) ligand, and thus the establishment of a key autocrine signaling pathway. Silencing of ADAM17 in human renal carcinoma cell lines corrects critical features associated with cancer cells, including growth autonomy, tumor inflammation, and tissue invasion. Highly malignant renal carcinoma cancer cells fail to form in vivo tumors in the absence of ADAM17, confirming the essential function of this molecule in tumorigenesis. These data show that ligand shedding is a crucial step in endogenous EGFR activation and endorse prospective therapeutic strategies targeting ADAM17 in human cancer.
Journal of Biological Chemistry | 2007
Vijay Yanamadala; Hideyuki Negoro; Lakshman Gunaratnam; Tianqing Kong; Bradley M. Denker
Apoptosis is an essential mechanism for the maintenance of somatic tissues, and when dysregulated can lead to numerous pathological conditions. G proteins regulate apoptosis in addition to other cellular functions, but the roles of specific G proteins in apoptosis signaling are not well characterized. Gα12 stimulates protein phosphatase 2A (PP2A), a serine/threonine phosphatase that modulates essential signaling pathways, including apoptosis. Herein, we examined whether Gα12 regulates apoptosis in epithelial cells. Inducible expression of Gα12 or constitutively active (QL)α12 in Madin-Darby canine kidney cells led to increased apoptosis with expression of QLα12, but not Gα12. Inducing QLα12 led to degradation of the anti-apoptotic protein Bcl-2 (via the proteasome pathway), increased JNK activity, and up-regulated IκBα protein levels, a potent stimulator of apoptosis. Furthermore, the QLα12-stimulated activation of JNK was blocked by inhibiting PP2A. To characterize endogenous Gα12 signaling pathways, non-transfected MDCK-II and HEK293 cells were stimulated with thrombin. Thrombin activated endogenous Gα12 (confirmed by GST-tetratricopeptide repeat (TPR) pull-downs) and stimulated apoptosis in both cell types. The mechanisms of thrombin-stimulated apoptosis through endogenous Gα12 were nearly identical to the mechanisms identified in QLα12-MDCK cells and included loss of Bcl-2, JNK activation, and up-regulation of IκBα. Knockdown of the PP2A catalytic subunit in HEK293 cells inhibited thrombin-stimulated apoptosis, prevented JNK activation, and blocked Bcl-2 degradation. In summary, Gα12 has a major role in regulating epithelial cell apoptosis through PP2A and JNK activation leading to loss of Bcl-2 protein expression. Targeting these pathways in vivo may lead to new therapeutic strategies for a variety of disease processes.
Cell Cycle | 2004
Karim Mekhail; Mireille Khacho; Lakshman Gunaratnam; Stephen Lee
Hypoxia and acidosis are common features of several physiological and pathological situations, including cancer and stroke. The HIF (hypoxia-inducible factor) transcription factor plays a seminal role in orchestrating cellular responses to alterations in oxygen availability. HIF is degraded in normal oxygen tension by the VHL (von Hippel-Lindau) tumor suppressor protein but stabilized by hypoxia to activate an array of genes implicated in oxygen homeostasis including vascular endothelial growth factor. Cells respond to a comparatively mild decline in oxygen tension by converting to an anaerobic state of respiration and secreting lactic acid. We recently reported that a decrease in environmental pH triggers sequestration of VHL into the nucleolus neutralizing its ability to degrade HIF. This implies that cells have evolved a parallel mechanism of HIF activation that responds to changes in oxygen levels by sensing extracellular [H+]. Here we discuss the implications of this new VHL regulatory mechanism on oxygen homeostasis and hypoxic cell memory.