Lakshmi Narasimhan
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lakshmi Narasimhan.
Proceedings of the National Academy of Sciences of the United States of America | 2009
J. Richard Miller; Steve Dunham; Igor Mochalkin; Craig Banotai; Matthew Bowman; Susan Buist; Bill Dunkle; Debra Hanna; H. James Harwood; Michael D. Huband; Alla Karnovsky; Michael Kuhn; Chris Limberakis; Jia Y. Liu; Shawn Mehrens; W. Thomas Mueller; Lakshmi Narasimhan; Adam Ogden; Jeff Ohren; J. V. N. Vara Prasad; John A. Shelly; Laura Skerlos; Mark C. Sulavik; V. Hayden Thomas; Steve VanderRoest; Li Ann Wang; Zhigang Wang; Amy Whitton; Tong Zhu; C. Kendall Stover
As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.
ACS Chemical Biology | 2009
Igor Mochalkin; J. Richard Miller; Lakshmi Narasimhan; Venkataraman Thanabal; Paul Erdman; Philip B. Cox; J. V. N. Vara Prasad; Sandra Lightle; Michael D. Huband; C. Kendall Stover
As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.
Journal of Computer-aided Molecular Design | 2011
Wan F. Lau; Jane M. Withka; David Hepworth; Thomas V. Magee; Yuhua J. Du; Gregory A. Bakken; Michael D. Miller; Zachary S. Hendsch; Venkataraman Thanabal; Steve A. Kolodziej; Li Xing; Qiyue Hu; Lakshmi Narasimhan; Robert Love; Maura E. Charlton; Samantha J. Hughes; Willem P. van Hoorn; James E. J. Mills
Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM–mM hits and the uniqueness of hits at weak binding affinities for these targets.
Protein Science | 2008
Igor Mochalkin; Sandra Lightle; Lakshmi Narasimhan; Dirk Bornemeier; Michael Melnick; Steven VanderRoest; Laura McDowell
N‐Acetylglucosamine‐1‐phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine‐diphospho‐N‐acetylglucosamine (UDP‐GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram‐negative and Gram‐positive bacteria. Here we disclose a 1.9 Å resolution crystal structure of a synthetic small‐molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high‐throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC50 ∼ 18 μM in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc‐1‐P substrate‐binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure‐guided design of a new class of mechanism‐based inhibitors of GlmU.
Bioorganic & Medicinal Chemistry | 2009
Chad A. Van Huis; Agustin Casimiro-Garcia; Christopher F. Bigge; Wayne L. Cody; Danette Andrea Dudley; Kevin J. Filipski; Ronald J. Heemstra; Jeffrey T. Kohrt; Robert J. Leadley; Lakshmi Narasimhan; Thomas McClanahan; Igor Mochalkin; Michael Pamment; J. Thomas Peterson; Vaishali Sahasrabudhe; Robert P. Schaum; Jeremy J. Edmunds
Aiming to improve upon previously disclosed Factor Xa inhibitors, a series of 4,4-disubstituted pyrrolidine-1,2-dicarboxamides were explored with the intent of increasing the projected human half-life versus 5 (projected human t(1/2)=6 h). A stereospecific route to compounds containing a 4-aryl-4-hydroxypyrrolidine scaffold was developed, resulting in several compounds that demonstrated an increase in the half-life as well as an increase in the in vitro potency compared to 5. Reported herein is the discovery of 26, containing a (2R,4S)-4-hydroxy-4-(2,4-difluorophenyl)-pyrrolidine scaffold, which is a selective, orally bioavailable, efficacious Factor Xa inhibitor that appears suitable for a once-daily dosing (projected human t(1/2)=23 h).
Chemical Biology & Drug Design | 2007
Chad A. Van Huis; Christopher F. Bigge; Agustin Casimiro-Garcia; Wayne L. Cody; Danette Andrea Dudley; Kevin J. Filipski; Ronald J. Heemstra; Jeffrey T. Kohrt; Lakshmi Narasimhan; Robert P. Schaum; Erli Zhang; John W. Bryant; Staci Haarer; Nancy Janiczek; Robert J. Leadley; Thomas McClanahan; J. Thomas Peterson; Kathleen M. Welch; Jeremy J. Edmunds
A novel series of pyrrolidine‐1,2‐dicarboxamides was discovered as factor Xa inhibitors using structure‐based drug design. This series consisted of a neutral 4‐chlorophenylurea P1, a biphenylsulfonamide P4 and a d‐proline scaffold (1, IC50 = 18 nm). Optimization of the initial hit resulted in an orally bioavailable, subnanomolar inhibitor of factor Xa (13, IC50 = 0.38 nm), which was shown to be efficacious in a canine electrolytic model of thrombosis with minimal bleeding.
Bioorganic & Medicinal Chemistry Letters | 1999
Janet S. Plummer; Cuiman Cai; Sheryl Jeanne Hays; John L. Gilmore; Mark R. Emmerling; Walter Michael; Lakshmi Narasimhan; M. Desiree Watson; Kevin K. W. Wang; Rathna Nath; Lori M. Evans; Juan C. Jaen
A series of 2-sulfonyl-4H-3,1-benzoxazinones was prepared that inhibit C1r protease in vitro. Several compounds were found to be selective for C1r verses the related serine protease trypsin. Selected compounds demonstrated functional activity in a hemolysis assay.
Bioorganic & Medicinal Chemistry Letters | 2009
Justin Ian Montgomery; Peter L. Toogood; Kim Marie Hutchings; Jia Liu; Lakshmi Narasimhan; Timothy Braden; Michael R. Dermyer; Angela D. Kulynych; Yvonne Smith; Joseph Scott Warmus; Clarke B. Taylor
A series of benzyl phenyl ethers (BPEs) is described that displays potent inhibition of bacterial phenylalanyl-tRNA synthetase. The synthesis, SAR, and select ADMET data are provided.
Expert Opinion on Drug Discovery | 2007
Tod P. Holler; Artem G. Evdokimov; Lakshmi Narasimhan
Antibacterial drug discovery has undertaken a major experiment in the 12 years since the first bacterial genomes were sequenced. Genome mining has identified hundreds of potential targets that have been distilled to a relatively small number of broad-spectrum targets (‘low-hanging fruit’) using the genetics tools of modern microbiology. Prosecuting these targets with high-throughput screens has led to a disappointingly small number of lead series that have mostly evaporated under closer scrutiny. In the meantime, multi-drug resistant pathogens are becoming a serious challenge in the clinic and the community and the number of pharmaceutical firms pursuing antibacterial discovery has declined. Filling the antibacterial development pipeline with novel chemical series is a significant challenge that will require the collaboration of scientists from many disciplines. Fortunately, advancements in the tools of structural biology and of in silico modeling are opening up new avenues of research that may help deal with the problems associated with discovering novel antibiotics.
Nature Structural & Molecular Biology | 1994
Lakshmi Narasimhan; Juswinder Singh; Christine Humblet; Kunchur Guruprasad; Tom L. Blundell