Lakshminarasimhan Pavithra
Savitribai Phule Pune University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lakshminarasimhan Pavithra.
Molecular and Cellular Biology | 2005
Shravanti Rampalli; Lakshminarasimhan Pavithra; Altaf Bhatt; Tapas K. Kundu; Samit Chattopadhyay
ABSTRACT Matrix attachment region binding proteins have been shown to play an important role in gene regulation by altering chromatin in a stage- and tissue-specific manner. Our previous studies report that SMAR1, a matrix-associated protein, regresses B16-F1-induced tumors in mice. Here we show SMAR1 targets the cyclin D1 promoter, a gene product whose dysregulation is attributed to breast malignancies. Our studies reveal that SMAR1 represses cyclin D1 gene expression, which can be reversed by small interfering RNA specific to SMAR1. We demonstrate that SMAR1 interacts with histone deacetylation complex 1, SIN3, and pocket retinoblastomas to form a multiprotein repressor complex. This interaction is mediated by the SMAR1(160-350) domain. Our data suggest SMAR1 recruits a repressor complex to the cyclin D1 promoter that results in deacetylation of chromatin at that locus, which spreads to a distance of at least the 5 kb studied upstream of the cyclin D1 promoter. Interestingly, we find that the high induction of cyclin D1 in breast cancer cell lines can be correlated to the decreased levels of SMAR1 in these lines. Our results establish the molecular mechanism exhibited by SMAR1 to regulate cyclin D1 by modification of chromatin.
Journal of Biological Chemistry | 2005
Archana Jalota; Kamini Singh; Lakshminarasimhan Pavithra; Ruchika Kaul-Ghanekar; Shahid Jameel; Samit Chattopadhyay
Various stresses and DNA-damaging agents trigger transcriptional activity of p53 by post-translational modifications, making it a global regulatory switch that controls cell proliferation and apoptosis. Earlier we have shown that the novel MAR-associated protein SMAR1 interacts with p53. Here we delineate the minimal domain of SMAR1 (the arginine-serine-rich domain) that is phosphorylated by protein kinase C family proteins and is responsible for p53 interaction, activation, and stabilization within the nucleus. SMAR1-mediated stabilization of p53 is brought about by inhibiting Mdm2-mediated degradation of p53. We also demonstrate that this arginine-serine (RS)-rich domain triggers the various cell cycle modulating proteins that decide cell fate. Furthermore, phenotypic knock-down experiments using small interfering RNA showed that SMAR1 is required for activation and nuclear retention of p53. The level of phosphorylated p53 was significantly increased in the thymus of SMAR1 transgenic mice, showing in vivo significance of SMAR1 expression. This is the first report that demonstrates the mechanism of action of the MAR-binding protein SMAR1 in modulating the activity of p53, often referred to as the “guardian of the genome.”
Journal of Molecular Biology | 2009
Lakshminarasimhan Pavithra; Srijata Mukherjee; Kadreppa Sreenath; Sanchari Kar; Kazuyasu Sakaguchi; Siddhartha Roy; Samit Chattopadhyay
The intra-cellular level of tumor suppressor protein p53 is tightly controlled by an autoregulatory feedback loop between the protein and its negative regulator MDM2. The role of MDM2 in down-regulating the p53 response in unstressed conditions and in the post-stress recovery phase is well documented. However, interplay between the N-terminal phosphorylations and C-terminal acetylations of p53 in this context remains unclear. Here, we show that an MAR binding protein SMAR1 interacts with MDM2 and the Ser15 phosphorylated form of p53, forming a ternary complex in the post stress-recovery phase. This triple complex formation between p53, MDM2 and SMAR1 results in recruitment of HDAC1 to deacetylate p53. The deacetylated p53 binds poorly to the target promoter (p21), which results in switching off the p53 response, essential for re-entry into the cell cycle. Interestingly, the knock-down of SMAR1 using siRNA leads to a prolonged cell-cycle arrest in the post stress recovery phase due to ablation of p53-MDM2-HDAC1 interaction. Thus, the results presented here for the first time highlight the role of SMAR1 in masking the active phosphorylation site of p53, enabling the deacetylation of p53 by HDAC1-MDM2 complex, thereby regulating the p53 transcriptional response during stress rescue.
Virology | 2010
Kadreppa Sreenath; Lakshminarasimhan Pavithra; Sandeep Singh; Surajit Sinha; Prasanta K. Dash; Nagadenahalli B. Siddappa; Udaykumar Ranga; Debashis Mitra; Samit Chattopadhyay
Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that >98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.
FEBS Letters | 2010
Lakshminarasimhan Pavithra; Kadreppa Sreenath; Sandeep Singh; Samit Chattopadhyay
Here, we report Prostaglandin A2 (PGA2) induced binding of HSP70 to a novel site on φ1 SMAR1 5′ UTR which stabilizes the wild type transcript and leads to subsequent increase in SMAR1 protein levels. SMAR1 mediated cell cycle arrest is perturbed in PGA2‐treated cells when HSP70 is knocked‐down. Contrarily HSP70, unlike SMAR1, is overexpressed in breast cancers. We demonstrate that this is because of the inability of HSP70 to bind to the φ17 SMAR1 UTR variant which is the predominant form in breast cancers.
The International Journal of Biochemistry & Cell Biology | 2009
Lakshminarasimhan Pavithra; Sandeep Singh; Kadreppa Sreenath; Samit Chattopadhyay
Intermediary filaments play a crucial role in transformation of cells to a malignant phenotype. Here, we report that tumor suppressor SMAR1 downregulates Cytokeratin 8 gene expression by modulating p53-mediated transactivation of this gene. Moreover, the cell surface cytokeratin expression was downregulated leading to a decreased migration and invasiveness of cells. We further validated these results using genotoxic stress agents that lead to an increase in the levels of SMAR1 protein. This subsequently represses the transcription of Cytokeratin 8 gene by local chromatin condensation mediated by histone methylation and deacetylation. Evaluation of SMAR1 and Cytokeratin 8 proteins in different grades of cancer using tissue microarray point out at the inverse expression profiles of these genes (i.e. low levels of SMAR1 correlating with high expression of Cytokeratin 8) in higher grades of breast cancer. Therefore, the results presented here highlight the mechanism of Cytokeratin 8 gene regulation by interplay of tumor suppressor proteins SMAR1 and p53.
The International Journal of Biochemistry & Cell Biology | 2010
Sandeep Singh; Kadreppa Sreenath; Lakshminarasimhan Pavithra; Siddhartha Roy; Samit Chattopadhyay
Tumor suppressor SMAR1 is known to be involved in regulation of cell cycle and apoptotic genes transcription. It also directly interacts and stabilizes p53 through phosphorylation at serine-15 residue. Although the functions of SMAR1 are mainly restricted to the nucleus, we report its novel function with the cytoplasm. We show that SMAR1 directly interacts and inhibits AKR1a4 enzyme activity. Interestingly, AKR1a4 enzyme activity is elevated in higher grades of breast cancer where SMAR1 expression is drastically downregulated. Higher AKR1a4 activity protects the cancer cells from anticancer drugs and free radical stress. Through increased metabolism, ARK1a4 helps fulfilling higher energy needs required by cancer cell. The present study delineates yet another facet of tumor suppressor activity of SMAR1 in the cytoplasm. We also depict that upon stress, ATM kinase leads to dissociation of SMAR1-AKR1a4 complex through nuclear translocation of SMAR1 causing elevated AKR1a4 activity. Nuclear SMAR1 causes cell cycle arrest giving ample time for DNA damage repair, while AKR1a4 scavenges the excess free radicals which may further cause DNA damage. Thus, we propose a novel mechanism of regulation of oxidative stress by ATM through modulation of SMAR1-AKR1a4 complex. Further, we show that a small peptide derived from SMAR1 induces free radical stress by inhibiting AKR1a4 enzyme activity, which can be a potential anticancer therapeutic agent.
Biochemical and Biophysical Research Communications | 2009
Vir B. Singh; Lakshminarasimhan Pavithra; Samit Chattopadhyay; Jayanta K. Pal
The heme-regulated eIF-2alpha kinase, also called the heme-regulated inhibitor (HRI), is activated under various cytoplasmic stresses in reticulocytes leading to inhibition of initiation of protein synthesis. Our previous studies indicated that the promoter activity and expression of the human HRI (hHRI) increase in human K562 cells during heat shock and lead exposure. Contrary to this, hemin chloride which inactivates the kinase, downregulates HRI expression. Here, we attempted to understand the mechanism of regulation of hHRI expression in the lead- and hemin-exposed cells. Our results demonstrate the involvement of two transcription factors, Elk-1 and MZF-1 in regulating HRI expression. Chromatin immunoprecipitation assays established further that Elk-1 is involved in upregulating HRI expression during stress along with a co-activator p300, while MZF-1 along with HDAC-1 is instrumental in its downregulation during hemin treatment. We also demonstrate the involvement of ERK pathway in activating Elk-1 during stress resulting in an over expression of hHRI.
Nucleic Acids Research | 2007
Lakshminarasimhan Pavithra; Shravanti Rampalli; Surajit Sinha; Kadreppa Sreenath; Richard G. Pestell; Samit Chattopadhyay
Prostaglandins are anticancer agents known to inhibit tumor cell proliferation both in vitro and in vivo by affecting the mRNA stability. Here we report that a MAR-binding protein SMAR1 is a target of Prostaglandin A2 (PGA2) induced growth arrest. We identify a regulatory mechanism leading to stabilization of SMAR1 transcript. Our results show that a minor stem and loop structure present in the 5′ UTR of SMAR1 (ϕ1-UTR) is critical for nucleoprotein complex formation that leads to SMAR1 stabilization in response to PGA2. This results in an increased SMAR1 transcript and altered protein levels, that in turn causes downregulation of Cyclin D1 gene, essential for G1/S phase transition. We also provide evidence for the presence of a variant 5′ UTR SMAR1 (ϕ17-UTR) in breast cancer-derived cell lines. This form lacks the minor stem and loop structure required for mRNA stabilization in response to PGA2. As a consequence of this, there is a low level of endogenous tumor suppressor protein SMAR1 in breast cancer-derived cell lines. Our studies provide a mechanistic insight into the regulation of tumor suppressor protein SMAR1 by a cancer therapeutic PGA2, that leads to repression of Cyclin D1 gene.
Archive | 2007
Samit Chattopadhyay; Lakshminarasimhan Pavithra
The DNA in eukaryotic genome is compartmentalized into various domains by a series of loops tethered onto the base of nuclear matrix. Scaffold/ Matrix attachment regions (S/MAR) punctuate these attachment sites and govern the nuclear architecture by establishing chromatin boundaries. In this context, specific proteins that interact with and bind to MAR sequences called MAR binding proteins (MARBPs), are of paramount importance, as these sequences spool the proteins that regulate transcription, replication, repair and recombination. Recent evidences also suggest a role for these cis-acting elements in viral integration, replication and transcription, thereby affecting host immune system. Owing to the complex nature of these nucleotide sequences, less is known about the MARBPs that bind to and bring about diverse effects on chromatin architecture and gene function. Several MARBPs have been identified and characterized so far and the list is growing. The fact that most the MARBPs exist in a co-repressor/ co-activator complex and bring about gene regulation makes them quintessential for cellular processes. This participation in gene regulation means that any perturbation in the regulation and levels of MARBPs could lead to disease conditions, particularly those caused by abnormal cell proliferation, like cancer. In the present chapter, we discuss the role of MARs and MARBPs in eukaryotic gene regulation, recombination, transcription and viral integration by altering the local chromatin structure and their dysregulation in disease manifestation