Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lalantha Leelarathna is active.

Publication


Featured researches published by Lalantha Leelarathna.


The New England Journal of Medicine | 2015

Home Use of an Artificial Beta Cell in Type 1 Diabetes

Hood Thabit; Martin Tauschmann; Janet Macdonald Allen; Lalantha Leelarathna; Sara Hartnell; Malgorzata E Wilinska; Carlo L. Acerini; Sibylle Dellweg; Carsten Benesch; Lutz Heinemann; Julia K. Mader; Manuel Holzer; Harald Kojzar; Jane Exall; James Yong; Jennifer Pichierri; Katharine Barnard; Craig Kollman; Peiyao Cheng; Peter C. Hindmarsh; Fiona Campbell; Sabine Arnolds; Thomas R. Pieber; Mark L. Evans; David B. Dunger; Roman Hovorka

BACKGROUND The feasibility, safety, and efficacy of prolonged use of an artificial beta cell (closed-loop insulin-delivery system) in the home setting have not been established. METHODS In two multicenter, crossover, randomized, controlled studies conducted under free-living home conditions, we compared closed-loop insulin delivery with sensor-augmented pump therapy in 58 patients with type 1 diabetes. The closed-loop system was used day and night by 33 adults and overnight by 25 children and adolescents. Participants used the closed-loop system for a 12-week period and sensor-augmented pump therapy (control) for a similar period. The primary end point was the proportion of time that the glucose level was between 70 mg and 180 mg per deciliter for adults and between 70 mg and 145 mg per deciliter for children and adolescents. RESULTS Among adults, the proportion of time that the glucose level was in the target range was 11.0 percentage points (95% confidence interval [CI], 8.1 to 13.8) greater with the use of the closed-loop system day and night than with control therapy (P<0.001). The mean glucose level was lower during the closed-loop phase than during the control phase (difference, -11 mg per deciliter; 95% CI, -17 to -6; P<0.001), as were the area under the curve for the period when the glucose level was less than 63 mg per deciliter (39% lower; 95% CI, 24 to 51; P<0.001) and the mean glycated hemoglobin level (difference, -0.3%; 95% CI, -0.5 to -0.1; P=0.002). Among children and adolescents, the proportion of time with the nighttime glucose level in the target range was higher during the closed-loop phase than during the control phase (by 24.7 percentage points; 95% CI, 20.6 to 28.7; P<0.001), and the mean nighttime glucose level was lower (difference, -29 mg per deciliter; 95% CI, -39 to -20; P<0.001). The area under the curve for the period in which the day-and-night glucose levels were less than 63 mg per deciliter was lower by 42% (95% CI, 4 to 65; P=0.03). Three severe hypoglycemic episodes occurred during the closed-loop phase when the closed-loop system was not in use. CONCLUSIONS Among patients with type 1 diabetes, 12-week use of a closed-loop system, as compared with sensor-augmented pump therapy, improved glucose control, reduced hypoglycemia, and, in adults, resulted in a lower glycated hemoglobin level. (Funded by the JDRF and others; AP@home04 and APCam08 ClinicalTrials.gov numbers, NCT01961622 and NCT01778348.).


Diabetes Care | 2014

Overnight Closed-Loop Insulin Delivery in Young People With Type 1 Diabetes: A Free-Living, Randomized Clinical Trial

Roman Hovorka; Daniela Elleri; Hood Thabit; Janet Macdonald Allen; Lalantha Leelarathna; Ranna El-Khairi; Kavita Kumareswaran; Karen Caldwell; Peter Calhoun; Craig Kollman; Helen R. Murphy; Carlo L. Acerini; Malgorzata E Wilinska; Marianna Nodale; David B. Dunger

OBJECTIVE To evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes. RESEARCH DESIGN AND METHODS Overnight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12–18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h. RESULTS Closed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range −9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range −4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop. CONCLUSIONS Unsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.


Diabetes Care | 2013

Closed-Loop Basal Insulin Delivery Over 36 Hours in Adolescents With Type 1 Diabetes: Randomized clinical trial

Daniela Elleri; Janet M. Allen; Kavita Kumareswaran; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Peiyao Cheng; Craig Kollman; Ahmad Haidar; Helen R. Murphy; Malgorzata E. Wilinska; Carlo L. Acerini; David B. Dunger; Roman Hovorka

OBJECTIVE We evaluated the safety and efficacy of closed-loop basal insulin delivery during sleep and after regular meals and unannounced periods of exercise. RESEARCH DESIGN AND METHODS Twelve adolescents with type 1 diabetes (five males; mean age 15.0 [SD 1.4] years; HbA1c 7.9 [0.7]%; BMI 21.4 [2.6] kg/m2) were studied at a clinical research facility on two occasions and received, in random order, either closed-loop basal insulin delivery or conventional pump therapy for 36 h. During closed-loop insulin delivery, pump basal rates were adjusted every 15 min according to a model predictive control algorithm informed by subcutaneous sensor glucose levels. During control visits, subjects’ standard infusion rates were applied. Prandial insulin boluses were given before main meals (50–80 g carbohydrates) but not before snacks (15–30 g carbohydrates). Subjects undertook moderate-intensity exercise, not announced to the algorithm, on a stationary bicycle at a 140 bpm heart rate in the morning (40 min) and afternoon (20 min). Primary outcome was time when plasma glucose was in the target range (71–180 mg/dL). RESULTS Closed-loop basal insulin delivery increased percentage time when glucose was in the target range (median 84% [interquartile range 78–88%] vs. 49% [26–79%], P = 0.02) and reduced mean plasma glucose levels (128 [19] vs. 165 [55] mg/dL, P = 0.02). Plasma glucose levels were in the target range 100% of the time on 17 of 24 nights during closed-loop insulin delivery. Hypoglycemia occurred on 10 occasions during control visits and 9 occasions during closed-loop delivery (5 episodes were exercise related, and 4 occurred within 2.5 h of prandial bolus). CONCLUSIONS Day-and-night closed-loop basal insulin delivery can improve glucose control in adolescents. However, unannounced moderate-intensity exercise and excessive prandial boluses pose challenges to hypoglycemia-free closed-loop basal insulin delivery.


The Lancet Diabetes & Endocrinology | 2014

Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study.

Hood Thabit; Alexandra Lubina-Solomon; Marietta Stadler; Lalantha Leelarathna; Emma Walkinshaw; Andrew Pernet; Janet Macdonald Allen; Ahmed Iqbal; Pratik Choudhary; Kavita Kumareswaran; Marianna Nodale; Chloe Nisbet; Malgorzata E Wilinska; Katharine Barnard; David B. Dunger; Simon Heller; Stephanie A. Amiel; Mark L. Evans; Roman Hovorka

BACKGROUND Closed-loop insulin delivery is a promising option to improve glycaemic control and reduce the risk of hypoglycaemia. We aimed to assess whether overnight home use of automated closed-loop insulin delivery would improve glucose control. METHODS We did this open-label, multicentre, randomised controlled, crossover study between Dec 1, 2012, and Dec 23, 2014, recruiting patients from three centres in the UK. Patients aged 18 years or older with type 1 diabetes were randomly assigned to receive 4 weeks of overnight closed-loop insulin delivery (using a model-predictive control algorithm to direct insulin delivery), then 4 weeks of insulin pump therapy (in which participants used real-time display of continuous glucose monitoring independent of their pumps as control), or vice versa. Allocation to initial treatment group was by computer-generated permuted block randomisation. Each treatment period was separated by a 3-4 week washout period. The primary outcome was time spent in the target glucose range of 3·9-8·0 mmol/L between 0000 h and 0700 h. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01440140. FINDINGS We randomly assigned 25 participants to initial treatment in either the closed-loop group or the control group, patients were later crossed over into the other group; one patient from the closed-loop group withdrew consent after randomisation, and data for 24 patients were analysed. Closed loop was used over a median of 8·3 h (IQR 6·0-9·6) on 555 (86%) of 644 nights. The proportion of time when overnight glucose was in target range was significantly higher during the closed-loop period compared to during the control period (mean difference between groups 13·5%, 95% CI 7·3-19·7; p=0·0002). We noted no severe hypoglycaemic episodes during the control period compared with two episodes during the closed-loop period; these episodes were not related to closed-loop algorithm instructions. INTERPRETATION Unsupervised overnight closed-loop insulin delivery at home is feasible and could improve glucose control in adults with type 1 diabetes. FUNDING Diabetes UK.


Diabetes Care | 2014

Day and Night Home Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes: Three-Center Randomized Crossover Study

Lalantha Leelarathna; Sibylle Dellweg; Julia K. Mader; Janet Macdonald Allen; Carsten Benesch; Werner Doll; Martin Ellmerer; Sara Hartnell; Lutz Heinemann; Harald Kojzar; Lucy Michalewski; Marianna Nodale; Hood Thabit; Malgorzata E Wilinska; Thomas R. Pieber; Sabine Arnolds; Mark L. Evans; Roman Hovorka

OBJECTIVE To evaluate the feasibility of day and night closed-loop insulin delivery in adults with type 1 diabetes under free-living conditions. RESEARCH DESIGN AND METHODS Seventeen adults with type 1 diabetes on insulin pump therapy (means ± SD age 34 ± 9 years, HbA1c 7.6 ± 0.8%, and duration of diabetes 19 ± 9 years) participated in an open-label multinational three-center crossover study. In a random order, participants underwent two 8-day periods (first day at the clinical research facility followed by 7 days at home) of sensor-augmented insulin pump therapy (SAP) or automated closed-loop insulin delivery. The primary end point was the time when sensor glucose was in target range between 3.9 and 10.0 mmol/L during the 7-day home phase. RESULTS During the home phase, the percentage of time when glucose was in target range was significantly higher during closed-loop compared with SAP (median 75% [interquartile range 61–79] vs. 62% [53–70], P = 0.005). Mean glucose (8.1 vs. 8.8 mmol/L, P = 0.027) and time spent above target (P = 0.013) were lower during closed loop, while time spent below target was comparable (P = 0.339). Increased time in target was observed during both daytime (P = 0.017) and nighttime (P = 0.013). CONCLUSIONS Compared with SAP, 1 week of closed-loop insulin delivery at home reduces mean glucose and increases time in target without increasing the risk of hypoglycemia in adults with relatively well-controlled type 1 diabetes.


Diabetes Care | 2014

Recovery of Hypoglycemia Awareness in Long-Standing Type 1 Diabetes: A Multicenter 2 × 2 Factorial Randomized Controlled Trial Comparing Insulin Pump With Multiple Daily Injections and Continuous With Conventional Glucose Self-Monitoring (HypoCOMPaSS)

Stuart Little; Lalantha Leelarathna; Emma Walkinshaw; Hk Tan; Olivia Chapple; Alexandra Lubina-Solomon; Thomas Chadwick; Shalleen Barendse; Deborah D. Stocken; Catherine Brennand; Sally M. Marshall; Ruth Wood; Jane Speight; David Kerr; Daniel Flanagan; Heller; Mark L. Evans; Shaw Ja

OBJECTIVE To determine whether impaired awareness of hypoglycemia (IAH) can be improved and severe hypoglycemia (SH) prevented in type 1 diabetes, we compared an insulin pump (continuous subcutaneous insulin infusion [CSII]) with multiple daily injections (MDIs) and adjuvant real-time continuous glucose monitoring (RT) with conventional self-monitoring of blood glucose (SMBG). RESEARCH DESIGN AND METHODS A 24-week 2 × 2 factorial randomized controlled trial in adults with type 1 diabetes and IAH was conducted. All received comparable education, support, and congruent therapeutic targets aimed at rigorous avoidance of biochemical hypoglycemia without relaxing overall control. Primary end point was between-intervention difference in 24-week hypoglycemia awareness (Gold score). RESULTS A total of 96 participants (mean diabetes duration 29 years) were randomized. Overall, biochemical hypoglycemia (≤3.0 mmol/L) decreased (53 ± 63 to 24 ± 56 min/24 h; P = 0.004 [t test]) without deterioration in HbA1c. Hypoglycemia awareness improved (5.1 ± 1.1 to 4.1 ± 1.6; P = 0.0001 [t test]) with decreased SH (8.9 ± 13.4 to 0.8 ± 1.8 episodes/patient-year; P = 0.0001 [t test]). At 24 weeks, there was no significant difference in awareness comparing CSII with MDI (4.1 ± 1.6 vs. 4.2 ± 1.7; difference 0.1; 95% CI −0.6 to 0.8) and RT with SMBG (4.3 ± 1.6 vs. 4.0 ± 1.7; difference −0.3; 95% CI −1.0 to 0.4). Between-group analyses demonstrated comparable reductions in SH, fear of hypoglycemia, and insulin doses with equivalent HbA1c. Treatment satisfaction was higher with CSII than MDI (32 ± 3 vs. 29 ± 6; P = 0.0003 [t test]), but comparable with SMBG and RT (30 ± 5 vs. 30 ± 5; P = 0.79 [t test]). CONCLUSIONS Hypoglycemia awareness can be improved and recurrent SH prevented in long-standing type 1 diabetes without relaxing HbA1c. Similar biomedical outcomes can be attained with conventional MDI and SMBG regimens compared with CSII/RT, although satisfaction was higher with CSII.


Diabetes Care | 2013

Day and Night Closed-Loop Control in Adults With Type 1 Diabetes: A comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management

Yoeri M. Luijf; J. Hans DeVries; Koos H. Zwinderman; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Kavita Kumareswaran; Daniela Elleri; Janet M. Allen; Malgorzata E. Wilinska; Mark L. Evans; Roman Hovorka; Werner Doll; Martin Ellmerer; Julia K. Mader; Eric Renard; Jerome Place; Anne Farret; Claudio Cobelli; Simone Del Favero; Chiara Dalla Man; Angelo Avogaro; Daniela Bruttomesso; Alessio Filippi; Rachele Scotton; Lalo Magni; Giordano Lanzola; Federico Di Palma; Paola Soru; Chiara Toffanin

OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control.


BMJ open diabetes research & care | 2014

Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents

Katharine Barnard; Tim Wysocki; Janet M. Allen; Daniela Elleri; Hood Thabit; Lalantha Leelarathna; Arti Gulati; Marianna Nodale; David B. Dunger; Tannaze Tinati; Roman Hovorka

Objective To explore the experiences of adolescents with type 1 diabetes mellitus (T1DM) and their parents taking part in an overnight closed loop study at home, using qualitative and quantitative research methods. Research design and methods Adolescents aged 12–18 years on insulin pump therapy were recruited to a pilot closed loop study in the home setting. Following training on the use of a study insulin pump and continuous glucose monitoring (CGM), participants were randomized to receive either real-time CGM combined with overnight closed loop or real-time CGM alone followed by the alternative treatment for an additional 21 days with a 2–3-week washout period in between study arms. Semistructured interviews were performed to explore participants’ perceptions of the impact of the closed loop technology. At study entry and again at the end of each 21-day crossover arm of the trial, participants completed the Diabetes Technology Questionnaire (DTQ) and Hypoglycemia Fear Survey (HFS; also completed by parents). Results 15 adolescents and 13 parents were interviewed. Key positive themes included reassurance/peace of mind, confidence, ‘time off’ from diabetes demands, safety, and improved diabetes control. Key negative themes included difficulties with calibration, alarms, and size of the devices. DTQ results reflected these findings. HFS scores were mixed. Conclusions Closed loop insulin delivery represents cutting-edge technology in the treatment of T1DM. Results indicate that the psychological and physical benefits of the closed loop system outweighed the practical challenges reported. Further research from longitudinal studies is required to determine the long-term psychosocial benefit of the closed loop technology.


Diabetes Care | 2013

Day and Night Closed-Loop Control in Adults With Type 1 Diabetes Mellitus

Yoeri M. Luijf; J. Hans DeVries; Koos H. Zwinderman; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Kavita Kumareswaran; Daniela Elleri; Janet M. Allen; Malgorzata E. Wilinska; Mark L. Evans; Roman Hovorka; Werner Doll; Martin Ellmerer; Julia K. Mader; Eric Renard; Jerome Place; Anne Farret; Claudio Cobelli; Simone Del Favero; Chiara Dalla Man; Angelo Avogaro; Daniela Bruttomesso; Alessio Filippi; Rachele Scotton; Lalo Magni; Giordano Lanzola; Federico Di Palma; Paola Soru; Chiara Toffanin

OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control.


Critical Care | 2013

Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial

Lalantha Leelarathna; Shane W. English; Hood Thabit; Karen Caldwell; Janet Macdonald Allen; Kavita Kumareswaran; Malgorzata E Wilinska; Marianna Nodale; Jasdip S. Mangat; Mark L. Evans; Rowan Burnstein; Roman Hovorka

IntroductionClosed-loop (CL) systems modulate insulin delivery according to glucose levels without nurse input. In a prospective randomized controlled trial, we evaluated the feasibility of an automated closed-loop approach based on subcutaneous glucose measurements in comparison with a local sliding-scale insulin-therapy protocol.MethodsTwenty-four critically ill adults (predominantly trauma and neuroscience patients) with hyperglycemia (glucose, ≥10 mM) or already receiving insulin therapy, were randomized to receive either fully automated closed-loop therapy (model predictive control algorithm directing insulin and 20% dextrose infusion based on FreeStyle Navigator continuous subcutaneous glucose values, n = 12) or a local protocol (n = 12) with intravenous sliding-scale insulin, over a 48-hour period. The primary end point was percentage of time when arterial blood glucose was between 6.0 and 8.0 mM.ResultsThe time when glucose was in the target range was significantly increased during closed-loop therapy (54.3% (44.1 to 72.8) versus 18.5% (0.1 to 39.9), P = 0.001; median (interquartile range)), and so was time in wider targets, 5.6 to 10.0 mM and 4.0 to 10.0 mM (P ≤ 0.002), reflecting a reduced glucose exposure >8 and >10 mM (P ≤ 0.002). Mean glucose was significantly lower during CL (7.8 (7.4 to 8.2) versus 9.1 (8.3 to 13.0] mM; P = 0.001) without hypoglycemia (<4 mM) during either therapy.ConclusionsFully automated closed-loop control based on subcutaneous glucose measurements is feasible and may provide efficacious and hypoglycemia-free glucose control in critically ill adults.Trial RegistrationClinicalTrials.gov Identifier, NCT01440842.

Collaboration


Dive into the Lalantha Leelarathna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hood Thabit

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge