Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lalini Ramanathan is active.

Publication


Featured researches published by Lalini Ramanathan.


Neuron | 2000

Reduced number of hypocretin neurons in human narcolepsy.

Thomas C. Thannickal; Robert Y. Moore; Robert Nienhuis; Lalini Ramanathan; Seema Gulyani; Michael S. Aldrich; Marsha Cornford; Jerome M. Siegel

Murine and canine narcolepsy can be caused by mutations of the hypocretin (Hcrt) (orexin) precursor or Hcrt receptor genes. In contrast to these animal models, most human narcolepsy is not familial, is discordant in identical twins, and has not been linked to mutations of the Hcrt system. Thus, the cause of human narcolepsy remains unknown. Here we show that human narcoleptics have an 85%-95% reduction in the number of Hcrt neurons. Melanin-concentrating hormone (MCH) neurons, which are intermixed with Hcrt cells in the normal brain, are not reduced in number, indicating that cell loss is relatively specific for Hcrt neurons. The presence of gliosis in the hypocretin cell region is consistent with a degenerative process being the cause of the Hcrt cell loss in narcolepsy.


Neuroreport | 2002

Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem.

Lalini Ramanathan; Seema Gulyani; Robert Nienhuis; Jerome M. Siegel

Sleep deprivation by the disk-over-water technique results in a predictable syndrome of physiological changes in rats. It has been proposed that reactive oxygen species (ROS) may be responsible for some of these effects. A variety of antioxidative enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) help to regulate the level of ROS. In this study we investigated the effects of prolonged (5–11 days) sleep deprivation on the activities of SOD and GPx as well as the metabolic activity of the mitochondria (using alamar blue) in several brain regions (cortex, hippocampus, hypothalamus, brainstem and cerebellum). We show that prolonged sleep deprivation significantly decreased Cu/Zn-SOD activity in the hippocampus and brainstem, suggesting an alteration in the metabolism of ROS resulting in oxidative stress.


Journal of Neurochemistry | 2005

Antioxidant responses to chronic hypoxia in the rat cerebellum and pons

Lalini Ramanathan; David Gozal; Jerome M. Siegel

Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.


The Journal of Neuroscience | 2011

Highly Specific Role of Hypocretin (Orexin) Neurons: Differential Activation as a Function of Diurnal Phase, Operant Reinforcement versus Operant Avoidance and Light Level

Ronald McGregor; Ming-Fung Wu; Grace Barber; Lalini Ramanathan; Jerome M. Siegel

Hypocretin (Hcrt) cell loss is responsible for narcolepsy, but Hcrts role in normal behavior is unclear. We found that Hcrt knock-out mice were unable to work for food or water reward during the light phase. However, they were unimpaired relative to wild-type (WT) mice when working for reward during the dark phase or when working to avoid shock in the light or dark phase. In WT mice, expression of Fos in Hcrt neurons occurs only in the light phase when working for positive reinforcement. Expression was seen throughout the mediolateral extent of the Hcrt field. Fos was not expressed when expected or unexpected unearned rewards were presented, when working to avoid negative reinforcement, or when given or expecting shock, even though these conditions elicit maximal electroencephalogram (EEG) arousal. Fos was not expressed in the light phase when light was removed. This may explain the lack of light-induced arousal in narcoleptics and its presence in normal individuals. This is the first demonstration of such specificity of arousal system function and has implications for understanding the motivational and circadian consequences of arousal system dysfunction. The current results also indicate that comparable and complementary specificities must exist in other arousal systems.


Annals of Neurology | 2013

Greatly increased numbers of histamine cells in human narcolepsy with cataplexy.

Joshi John; Thomas C. Thannickal; Ronald McGregor; Lalini Ramanathan; Hiroshi Ohtsu; Seiji Nishino; Noriaki Sakai; Akhiro Yamanaka; Carly Stone; Marcia E. Cornford; Jerome M. Siegel

To determine whether histamine cells are altered in human narcolepsy with cataplexy and in animal models of this disease.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats

Joshi John; Lalini Ramanathan; Jerome M. Siegel

The histamine-containing posterior hypothalamic region (PH-TMN) plays a key role in sleep-wake regulation. We investigated rapid changes in glutamate release in the PH-TMN across the sleep-wake cycle with a glutamate biosensor that allows the measurement of glutamate levels at 1- to 4-s resolution. In the PH-TMN, glutamate levels increased in active waking (AW) and rapid eye movement (REM) sleep compared with quiet waking and nonrapid eye movement (NREM) sleep. There was a rapid (0.6 +/- 1.8 s) and progressive increase in glutamate levels at REM sleep onset. A reduction in glutamate levels consistently preceded the offset of REM sleep by 8 +/- 3 s. Short-duration sleep deprivation resulted in a progressive increase in glutamate levels in the PH-TMN, perifornical-lateral hypothalamus (PF-LH), and cortex. We found that in the PF-LH, glutamate levels took a longer time to return to basal values compared with the time it took for glutamate levels to increase to peak values during AW onset. This is in contrast to other regions we studied in which the return to baseline values after AW was quicker than their rise with waking onset. In summary, we demonstrated an increase in glutamate levels in the PH-TMN with REM/AW onset and a drop in glutamate levels before the offset of REM. High temporal resolution measurement of glutamate levels reveals dynamic changes in release linked to the initiation and termination of REM sleep.


Brain Research | 2002

Increases in amino-cupric-silver staining of the supraoptic nucleus after sleep deprivation

Monica M Eiland; Lalini Ramanathan; Seema Gulyani; Marcia A. Gilliland; Bernard M. Bergmann; Allan Rechtschaffen; Jerome M. Siegel

Sleep deprived rats undergo a predictable sequence of physiological changes, including changes in skin condition, increased energy expenditure, and altered thermoregulation. Amino-cupric-silver staining was used to identify sleep deprivation related changes in the brain. A significant increase in staining was observed in the supraoptic nucleus (SON) of the hypothalamus of rats with high sleep loss (>45 h) vs. their yoked controls. Follow-up experiments showed that staining was not significantly different in rats sleep deprived for less than 45 h, suggesting that injurious sleep deprivation-related processes occur above a threshold quantity of sleep loss. These anatomical changes suggest that the effects of sleep deprivation may be related to protein metabolism in certain brain regions.


Behavioural Brain Research | 2010

Short term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior

Lalini Ramanathan; Shuxin Hu; Sally A. Frautschy; Jerome M. Siegel

Total sleep deprivation (TSD) induces a broad spectrum of cognitive, behavioral and cellular changes. We previously reported that long term (5-11 days) TSD in the rat, by the disk-over-water method, decreases the activity of the antioxidant enzyme superoxide dismutase (SOD) in the brainstem and hippocampus. To gain insight into the mechanisms causing cognitive impairment, here we explore the early associations between metabolic activity, antioxidant responses and working memory (one form of cognitive impairment). Specifically we investigated the impact of short-term (6h) TSD, by gentle handling, on the levels of the endogenous antioxidant, total glutathione (GSHt), and the activities of the antioxidative enzymes, SOD and glutathione peroxidase (GPx). Short-term TSD had no significant impact on SOD activity, but increased GSHt levels in the rat cortex, brainstem and basal forebrain, and GPx activity in the rat hippocampus and cerebellum. We also observed increased activity of hexokinase, (HK), the rate limiting enzyme of glucose metabolism, in the rat cortex and hypothalamus. We further showed that 6h of TSD leads to increased exploratory behavior to a new environment, without impairing spontaneous alternation behavior (SAB) in the Y maze. We conclude that acute (6h) sleep loss may trigger compensatory mechanisms (like increased antioxidant responses) that prevent initial deterioration in working memory.


Free Radical Biology and Medicine | 2011

Sleep deprivation under sustained hypoxia protects against oxidative stress.

Lalini Ramanathan; Jerome M. Siegel

We previously showed that total sleep deprivation increased antioxidant responses in several rat brain regions. We also reported that chronic hypoxia enhanced antioxidant responses and increased oxidative stress in rat cerebellum and pons, relative to normoxic conditions. In the current study, we examined the interaction between these two parameters (sleep and hypoxia). We exposed rats to total sleep deprivation under sustained hypoxia (SDSH) and compared changes in antioxidant responses and oxidative stress markers in the neocortex, hippocampus, brainstem, and cerebellum to those in control animals left undisturbed under either sustained hypoxia (UCSH) or normoxia (UCN). We measured changes in total nitrite levels as an indicator of nitric oxide (NO) production, superoxide dismutase (SOD) activity and total glutathione (GSHt) levels as markers of antioxidant responses, and levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyls as signs of lipid and protein oxidation products, respectively. We found that acute (6h) SDSH increased NO production in the hippocampus and increased GSHt levels in the neocortex, brainstem, and cerebellum while decreasing hippocampal lipid oxidation. Additionally, we observed increased hexokinase activity in the neocortex of SDSH rats compared to UCSH rats, suggesting that elevated glucose metabolism may be one potential source of the enhanced free radicals produced in this brain region. We conclude that short-term insomnia under hypoxia may serve as an adaptive response to prevent oxidative stress.


Journal of Neurochemistry | 2014

Gender differences between hypocretin/orexin knockout and wild type mice: age, body weight, body composition, metabolic markers, leptin and insulin resistance

Lalini Ramanathan; Jerome M. Siegel

Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20–60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7–9 months) as well as old (18–20 months) female KO mice compared to age‐matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age‐matched WT mice, but no significant change in body weight. Respiratory quotient (−19%) and metabolic rates (−14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18–20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age‐ and sex‐matched WT mice. We conclude that absence of the Hcrt peptide has gender‐specific effects. In contrast, Hcrt‐ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

Collaboration


Dive into the Lalini Ramanathan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seema Gulyani

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshi John

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darian Nguyen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge