Lalit Mohan Kandpal
Chungnam National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lalit Mohan Kandpal.
Sensors | 2013
Lalit Mohan Kandpal; Hoonsoo Lee; Moon S. Kim; Changyeun Mo; Byoung-Kwan Cho
Spectroscopy has proven to be an efficient tool for measuring the properties of meat. In this article, hyperspectral imaging (HSI) techniques are used to determine the moisture content in cooked chicken breast over the VIS/NIR (400–1,000 nm) spectral range. Moisture measurements were performed using an oven drying method. A partial least squares regression (PLSR) model was developed to extract a relationship between the HSI spectra and the moisture content. In the full wavelength range, the PLSR model possessed a maximum R2p of 0.90 and an SEP of 0.74%. For the NIR range, the PLSR model yielded an R2p of 0.94 and an SEP of 0.71%. The majority of the absorption peaks occurred around 760 and 970 nm, representing the water content in the samples. Finally, PLSR images were constructed to visualize the dehydration and water distribution within different sample regions. The high correlation coefficient and low prediction error from the PLSR analysis validates that HSI is an effective tool for visualizing the chemical properties of meat.
Journal of Biosystems Engineering | 2016
Santosh Lohumi; Lalit Mohan Kandpal; Young Wook Seo; Byoung Kwan Cho
Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage “soju”. Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: Th e results revealed that the NAS-PLSR model with selected variables ( = 0.95, RMSEV = 100ppm) did not outperform the NAS-PCR model ( = 0.97, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2017
Santosh Lohumi; Ritu Joshi; Lalit Mohan Kandpal; Hoonsoo Lee; Moon S. Kim; Hyunjeong Cho; Changyeun Mo; Young-Wook Seo; Anisur Rahman; Byoung-Kwan Cho
ABSTRACT As adulteration of foodstuffs with Sudan dye, especially paprika- and chilli-containing products, has been reported with some frequency, this issue has become one focal point for addressing food safety. FTIR spectroscopy has been used extensively as an analytical method for quality control and safety determination for food products. Thus, the use of FTIR spectroscopy for rapid determination of Sudan dye in paprika powder was investigated in this study. A net analyte signal (NAS)-based methodology, named HLA/GO (hybrid linear analysis in the literature), was applied to FTIR spectral data to predict Sudan dye concentration. The calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results had a high determination coefficient (R2) of 0.98 and low root mean square error (RMSE) of 0.026% for the calibration set, and an R2 of 0.97 and RMSE of 0.05% for the validation set. The model was further validated using a second validation set and through the figures of merit, such as sensitivity, selectivity, and limits of detection and quantification. The proposed technique of FTIR combined with HLA/GO is rapid, simple and low cost, making this approach advantageous when compared with the main alternative methods based on liquid chromatography (LC) techniques. GRAPHICAL ABSTRACT
Journal of Biosystems Engineering | 2015
Lalit Mohan Kandpal; Eunsoo Park; Jagdish Tewari; Byoung-Kwan Cho
, 2015Spectroscopy is an emerging technology for the quality assessment of pharmaceutical samples, from tablet manufacturing to final quality assurance. The traditional methods for the quality management of pharmaceutical tablets are time consuming and destructive, while spectroscopic techniques allow rapid analysis in a non-destructive manner. The advantage of spectroscopy is that it collects both spatial and spectral information (called hyperspectral imaging), which is useful for the chemical imaging of pharmaceutical samples. These chemical images provide both qualitative and quantitative information on tablet samples. In the pharmaceutics, spectroscopic techniques are used for a variety of applications, such as analysis of the homogeneity of powder samples as well as determination of particle size, product composition, and the concentration, uniformity, and distribution of the active pharmaceutical ingredient in solid tablets. This review paper presents an introduction to the applications of various spectroscopic techniques such as hyperspectroscopy and vibrational spectroscopies (Raman spectroscopy, FT-NIR, and IR spectroscopy) for the quality and safety assessment of pharmaceutical solid dosage forms. In addition, various chemometric techniques that are highly essential for analyzing the spectroscopic data of pharmaceutical samples are also reviewed.Keywords: Applications, Chemometrics, Hyperspectroscopy, Pharmaceutical, Vibrational spectroscopy
Journal of Biosystems Engineering | 2014
Lalit Mohan Kandpal; Byoung-Kwan Cho
Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, South Korea Received: August 13rd 2014; Revised: August 18th 2014; Accepted: August 20th 2014 Recently, spectroscopy has emerged as a potential tool for quality evaluation of numerous food and agricultural products because it provides information regarding both spectral distribution and image features of the sample (i.e., hyperspectral imaging). Spectroscopic techniques reveal hidden information regarding the sample and do so in a non-destructive manner. This review describes the various approaches of spectroscopic modalities, especially hyperspectroscopy and vibrational spectroscopies (i.e., Raman spectroscopy and Fourier transform near infrared spectroscopy) combined with chemometrics for the non-destructive assessment of contaminations and defects in agro-food products.
Journal of Biosystems Engineering | 2016
Joon-Yong Shim; Do-Gyun Kim; Jong-Tae Park; Lalit Mohan Kandpal; Soon-Jung Hong; Byoung-Kwan Cho; Wang-Hee Lee
and Temperature: A Review Joon-Yong Shim, Do-Gyun Kim, Jong-Tae Park, Lalit Mohan Kandpal, Soon-jung Hong, Byoung-Kwan Cho, Wang-Hee Lee* Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, 34134, Korea Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Korea Rural Human Resource Development Center, Rural Development Administration, Jeonju, Jeollabuk-do, 54874, Korea Received: November 10th, 2016; Revised: November 21st, 2016; Accepted: November 25th, 2016 Background: Recent inquiries into high-quality foods have discussed the importance of the functional aspects of foods, in addition to traditional quality indicators such as color, firmness, weight, trimming loss, respiration rate, texture, and soluble solid content. Recently, functional Chinese cabbage, which makes up a large portion of the vegetables consumed in Korea, has been identified as an anticancer treatment. However, the investigation of practical issues, such as the effects of storage conditions on quality indicators (including functional compounds), is still limited. Purpose: We reviewed various studies on variations in the quality indicators and functional compounds of Chinese cabbage in response to different storage environments, focusing on storage temperature and storage period. In particular, we emphasized the effect of storage temperature and storage period on glucosinolate (GSL) levels, in order to provide guidelines for optimizing storage environments to maximize GSLs. Additionally, we used response surface methodology to propose experimental designs for future studies exploring the optimal storage conditions for enhancing GSL contents. Review: Large variations in quality indicators were observed depending on the cultivar, the type of storage, the storage conditions, and the harvest time. In particular, GSL content varied with storage conditions, indicating that either low temperatures or adequate air composition by controlled atmospheric storage may preserve GSL levels, as well as prolonging shelf life. Even though genetic and biochemical approaches are preferred for developing functional Chinese cabbage, it is important to establish a practical method for preserving quality for marketability; a prospective study into optimal storage conditions for preserving functional compounds (which can be applied in farms), is required. This may be achievable with the comprehensive meta-analysis of currently published data introduced in this review, or by conducting newly designed experiments investigating the relationship between storage conditions and the levels of functional compounds.
PLOS ONE | 2018
Santosh Lohumi; Hoonsoo Lee; Moon S. Kim; Jianwei Qin; Lalit Mohan Kandpal; Hyungjin Bae; Anisur Rahman; Byoung-Kwan Cho
The potential adulteration of foodstuffs has led to increasing concern regarding food safety and security, in particular for powdered food products where cheap ground materials or hazardous chemicals can be added to increase the quantity of powder or to obtain the desired aesthetic quality. Due to the resulting potential health threat to consumers, the development of a fast, label-free, and non-invasive technique for the detection of adulteration over a wide range of food products is necessary. We therefore report the development of a rapid Raman hyperspectral imaging technique for the detection of food adulteration and for authenticity analysis. The Raman hyperspectral imaging system comprises of a custom designed laser illumination system, sensing module, and a software interface. Laser illumination system generates a 785 nm laser line of high power, and the Gaussian like intensity distribution of laser beam is shaped by incorporating an engineered diffuser. The sensing module utilize Rayleigh filters, imaging spectrometer, and detector for collection of the Raman scattering signals along the laser line. A custom-built software to acquire Raman hyperspectral images which also facilitate the real time visualization of Raman chemical images of scanned samples. The developed system was employed for the simultaneous detection of Sudan dye and Congo red dye adulteration in paprika powder, and benzoyl peroxide and alloxan monohydrate adulteration in wheat flour at six different concentrations (w/w) from 0.05 to 1%. The collected Raman imaging data of the adulterated samples were analyzed to visualize and detect the adulterant concentrations by generating a binary image for each individual adulterant material. The results obtained based on the Raman chemical images of adulterants showed a strong correlation (R>0.98) between added and pixel based calculated concentration of adulterant materials. This developed Raman imaging system thus, can be considered as a powerful analytical technique for the quality and authenticity analysis of food products.
Journal of Biosystems Engineering | 2016
Seung Hyun Lee; Jeong Gil Park; Dong Young Lee; Lalit Mohan Kandpal; Byoung-Kwan Cho; Soon-Jung Hong; Soojin Jun
Department of Biosystems Machinery Engineering, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon, 34143, Korea Smart Farming Education Team, Rural Human Source Development Center, 420 Nongsaengmyeong-ro, Wansan-Gu, Jeonju, 54874, Korea Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA Received: November 13rd, 2016; Revised: November 24th, 2016; Accepted: November 25th, 2016 Purpose: Drying is one of the most widely used methods for preserving agricultural products or food. The main purpose of drying agricultural products is to reduce their water content for minimizing microbial spoilage and deterioration reaction during storage. Methods: Although numerous drying methods are successfully applied to dehydrate various agricultural products with little drying time, the final quality of dried samples in terms of appearance and shape cannot be guaranteed. Therefore, based on published literature, this review was conducted to study the drying characteristics of various agricultural products when different drying methods were applied. Results: An increase in the drying power of sources-for example, increase in hot air temperature or velocity, infrared or microwave power-and the combination of drying power levels can reduce the drying time of various agricultural products. In addition, energy efficiency in drying significantly relies on the compositions of the dried samples and drying conditions. Conclusions: The drying power source is the key factor to control entire drying process of different samples and final product quality. In addition, an appropriate drying method should be selected depending on the compositions of the agricultural products.
Journal of the Korean Society for Nondestructive Testing | 2014
Hong-Seock Lee; Dae-Yong Kim; Lalit Mohan Kandpal; Sangdae Lee; Changyeun Mo; Soon-Jung Hong; Byoung-Kwan Cho
The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to , and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.
Sensors and Actuators B-chemical | 2016
Lalit Mohan Kandpal; Santosh Lohumi; Moon S. Kim; Jum-Soon Kang; Byoung-Kwan Cho