Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lam K. Huynh is active.

Publication


Featured researches published by Lam K. Huynh.


Journal of Physical Chemistry A | 2011

High-pressure rate rules for alkyl + O2 reactions. 1. The dissociation, concerted elimination, and isomerization channels of the alkyl peroxy radical.

Stephanie M. Villano; Lam K. Huynh; Hans-Heinrich Carstensen; Anthony M. Dean

The reactions of alkyl peroxy radicals (RO(2)) play a central role in the low-temperature oxidation of hydrocarbons. In this work, we present high-pressure rate estimation rules for the dissociation, concerted elimination, and isomerization reactions of RO(2). These rate rules are derived from a systematic investigation of sets of reactions within a given reaction class using electronic structure calculations performed at the CBS-QB3 level of theory. The rate constants for the dissociation reactions are obtained from calculated equilibrium constants and a literature review of experimental rate constants for the reverse association reactions. For the concerted elimination and isomerization channels, rate constants are calculated using canonical transition state theory. To determine if the high-pressure rate expressions from this work can directly be used in ignition models, we use the QRRK/MSC method to calculate apparent pressure and temperature dependent rate constants for representative reactions of small, medium, and large alkyl radicals with O(2). A comparison of concentration versus time profiles obtained using either the pressure dependent rate constants or the corresponding high-pressure values reveals that under most conditions relevant to combustion/ignition problems, the high-pressure rate rules can be used directly to describe the reactions of RO(2).


Journal of Physical Chemistry A | 2012

High-pressure rate rules for alkyl + O2 reactions. 2. The isomerization, cyclic ether formation, and β-scission reactions of hydroperoxy alkyl radicals.

Stephanie M. Villano; Lam K. Huynh; Hans-Heinrich Carstensen; Anthony M. Dean

The unimolecular reactions of hydroperoxy alkyl radicals (QOOH) play a central role in the low-temperature oxidation of hydrocarbons as they compete with the addition of a second O(2) molecule, which is known to provide chain-branching. In this work we present high-pressure rate estimation rules for the most important unimolecular reactions of the β-, γ-, and δ-QOOH radicals: isomerization to RO(2), cyclic ether formation, and selected β-scission reactions. These rate rules are derived from high-pressure rate constants for a series of reactions of a given reaction class. The individual rate expressions are determined from CBS-QB3 electronic structure calculations combined with canonical transition state theory calculations. Next we use the rate rules, along with previously published rate estimation rules for the reactions of alkyl peroxy radicals (RO(2)), to investigate the potential impact of falloff effects in combustion/ignition kinetic modeling. Pressure effects are examined for the reaction of n-butyl radical with O(2) by comparison of concentration versus time profiles that were obtained using two mechanisms at 10 atm: one that contains pressure-dependent rate constants that are obtained from a QRRK/MSC analysis and another that only contains high-pressure rate expressions. These simulations reveal that under most conditions relevant to combustion/ignition problems, the high-pressure rate rules can be used directly to describe the reactions of RO(2) and QOOH. For the same conditions, we also address whether the various isomers equilibrate during reaction. These results indicate that equilibrium is established between the alkyl, RO(2), and γ- and δ-QOOH radicals.


Journal of Physical Chemistry A | 2010

Detailed Modeling of Low-Temperature Propane Oxidation: 1. The Role of the Propyl + O2 Reaction

Lam K. Huynh; Hans-Heinrich Carstensen; Anthony M. Dean

Accurate description of reactions between propyl radicals and molecular oxygen is an essential prerequisite for modeling of low-temperature propane oxidation because their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The CBS-QB3 level of theory was used to construct potential energy surfaces for n-C(3)H(7) + O(2) and i-C(3)H(7) + O(2). High-pressure rate constants were calculated using transition state theory with corrections for tunneling and hindered rotations. These results were used to derive pressure- and temperature-dependent rate constants for the various channels of these reactions under the framework of the Quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent C(3)H(7) + O(2) submechanism, which was either used directly or as part of a larger extended detailed kinetic mechanism to predict the loss of propyl and the product yields of propylene and HO(2) over a wide range of temperatures, pressures, and residence times. The overall good agreement between predicted and experimental data suggests that this reaction subset is reliable and should be able to properly account for the reactions of propyl radicals with O(2) in propane oxidation. It is also demonstrated that for most conditions of practical interest only a small subset of reactions (e.g., isomerization, concerted elimination of HO(2), and stabilization) controls the oxidation kinetics, which makes it possible to considerably simplify the mechanism. Moreover, we observed strong similarities in the rate coefficients within each reaction class, suggesting the potential for development of relatively simple rate constant estimation rules that could be applied to analogous reactions involving hydrocarbon radicals that are too large to allow accurate detailed electronic structure calculations.


Journal of Physical Chemistry A | 2009

Kinetics of 1,4-Hydrogen Migration in the Alkyl Radical Reaction Class

Barbara Bankiewicz; Lam K. Huynh; Artur Ratkiewicz; Thanh N. Truong

The kinetics of the 1,4-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using reaction class transition-state theory combined with the linear energy relationship (LER) and barrier height grouping (BHG) approach. The rate constants for the reference reaction of n-C(4)H(9) were obtained by canonical variational transition-state theory (CVT) with the small curvature tunnelling (SCT) correction in the temperature range 300-3000 K with potential-energy surface information computed at the CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ level of theory. Error analyses indicate that RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically, for this reaction class the RC-TST/LER method has less than 65% systematic errors in the predicted rate constants, while the RC-TST/BHG method has less than 80% error when compared to explicit rate calculations.


Journal of Physical Chemistry A | 2011

Reactions of OH with butene isomers: measurements of the overall rates and a theoretical study.

Subith Vasu; Lam K. Huynh; David F. Davidson; Ronald K. Hanson; David M. Golden

Reactions of hydroxyl (OH) radicals with 1-butene (k(1)), trans-2-butene (k(2)), and cis-2-butene (k(3)) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH(3))(3)-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R(1)(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C(5) oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.


Journal of Physical Chemistry A | 2009

Kinetics of the hydrogen abstraction C2H3* + alkane --> C2H4 + alkyl radical reaction class.

Marta Muszyńska; Artur Ratkiewicz; Lam K. Huynh; Thanh N. Truong

This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type C(2)H(3) + alkane --> C(2)H(4) + alkyl radical. The linear energy relationship (LER) was proven to hold for both noncyclic and cyclic hydrocarbons. We have derived all parameters for the RC-TST method from rate constants of 19 representative reactions, coupling with LER and the barrier height grouping (BHG) approach. Both the RC-TST/LER, where only reaction energy is needed, and the RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with satisfactory accuracy for combustion modeling. Our analysis indicates that less than 90% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER or RC-TST/BHG method, while in comparison to explicit rate calculations, the differences are within a factor of 2 on the average.


Journal of Physical Chemistry A | 2015

Mechanism and Kinetics of Low-Temperature Oxidation of a Biodiesel Surrogate: Methyl Propanoate Radicals with Oxygen Molecule

Xuan T. Le; Tam V.-T. Mai; Artur Ratkiewicz; Lam K. Huynh

This paper presents a computational study on the low-temperature mechanism and kinetics of the reaction between molecular oxygen and alkyl radicals of methyl propanoate (MP), which plays an important role in low-temperature oxidation and/or autoignition processes of the title fuel. Their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The potential energy surfaces of the reactions between three primary MP radicals and molecular oxygen, namely, C(•)H2CH2COOCH3 + O2, CH3C(•)HCOOCH3 + O2, and CH3CH2COOC(•)H2 + O2, were constructed using the accurate composite CBS-QB3 method. Thermodynamic properties of all species as well as high-pressure rate constants of all reaction channels were derived with explicit corrections for tunneling and hindered internal rotations. Our calculation results are in good agreement with a limited number of scattered data in the literature. Furthermore, pressure- and temperature-dependent rate constants for all reaction channels on the multiwell-multichannel potential energy surfaces were computed with the quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent detailed kinetic submechanism for low-temperature oxidation governed by the title process. A simplified mechanism, which consists of important reactions, is also suggested for low-temperature combustion at engine-like conditions.


Journal of Computational Chemistry | 2014

SurfKin: An ab initio kinetic code for modeling surface reactions

Thong Nguyen-Minh Le; Bin Liu; Lam K. Huynh

In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas–surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water–gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.


Journal of Computational Chemistry | 2014

Density functional theory study on mechanisms of epoxy‐phenol curing reaction

My-Phuong Pham; Buu Q. Pham; Lam K. Huynh; Ha Q. Pham; Maurice J. Marks; Thanh N. Truong

A comprehensive picture on the mechanism of the epoxy‐phenol curing reactions is presented using the density functional theory B3LYP/ 6‐31G(d,p) and simplified physical molecular models to examine all possible reaction pathways. Phenol can act as its own promoter by using an addition phenol molecule to stabilize the transition states, and thus lower the rate‐limiting barriers by 27.0–48.9 kJ/mol. In the uncatalyzed reaction, an epoxy ring is opened by a phenol with an apparent barrier of about 129.6 kJ/mol. In catalyzed reaction, catalysts facilitate the epoxy ring opening prior to curing that lowers the apparent barriers by 48.9–50.6 kJ/mol. However, this can be competed in highly basic catalysts such as amine‐based catalysts, where catalysts are trapped in forms of hydrogen‐bonded complex with phenol. Our theoretical results predict the activation energy in the range of 79.0–80.7 kJ/mol in phosphine‐based catalyzed reactions, which agrees well with the reported experimental range of 54–86 kJ/mol.


Journal of Physical Chemistry A | 2017

Kinetics of Thermal Unimolecular Decomposition of Acetic Anhydride: An Integrated Deterministic and Stochastic Model

Tam V.-T. Mai; Minh v. Duong; Hieu Thanh Nguyen; Kuang C. Lin; Lam K. Huynh

An integrated deterministic and stochastic model within the master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) framework was first used to characterize temperature- and pressure-dependent behaviors of thermal decomposition of acetic anhydride in a wide range of conditions (i.e., 300-1500 K and 0.001-100 atm). Particularly, using potential energy surface and molecular properties obtained from high-level electronic structure calculations at CCSD(T)/CBS, macroscopic thermodynamic properties and rate coefficients of the title reaction were derived with corrections for hindered internal rotation and tunneling treatments. Being in excellent agreement with the scattered experimental data, the results from deterministic and stochastic frameworks confirmed and complemented each other to reveal that the main decomposition pathway proceeds via a 6-membered-ring transition state with the 0 K barrier of 35.2 kcal·mol-1. This observation was further understood and confirmed by the sensitivity analysis on the time-resolved species profiles and the derived rate coefficients with respect to the ab initio barriers. Such an agreement suggests the integrated model can be confidently used for a wide range of conditions as a powerful postfacto and predictive tool in detailed chemical kinetic modeling and simulation for the title reaction and thus can be extended to complex chemical reactions.

Collaboration


Dive into the Lam K. Huynh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuang C. Lin

National Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

M. C. Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

P. Raghunath

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Bin Liu

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge