Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lambert van den Heuvel is active.

Publication


Featured researches published by Lambert van den Heuvel.


Nature Reviews Genetics | 2001

The genetics and pathology of oxidative phosphorylation

Jan A.M. Smeitink; Lambert van den Heuvel; Salvatore DiMauro

The mitochondrial oxidative phosphorylation (OXPHOS) system is the final biochemical pathway in the production of ATP. The OXPHOS system consists of five multiprotein complexes, the individual subunits of which are encoded either by the mitochondrial or by the nuclear genome. Defects in the OXPHOS system result in devastating, mainly multisystem, diseases, and recent years have seen the description of the underlying genetic mutations in mitochondrial and nuclear genes. Advances in this arena have profited from progress in various genome projects, as well as improvements in our ability to create relevant animal models.


American Journal of Human Genetics | 1998

The First Nuclear-Encoded Complex I Mutation in a Patient with Leigh Syndrome

Jan Loeffen; Jan A.M. Smeitink; Ralf Triepels; Roel Smeets; Markus Schuelke; R. C. A. Sengers; Frans J.M. Trijbels; B.C.J. Hamel; Renier Mullaart; Lambert van den Heuvel

Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest multiprotein enzyme complex of the respiratory chain. The nuclear-encoded NDUFS8 (TYKY) subunit of complex I is highly conserved among eukaryotes and prokaryotes and contains two 4Fe4S ferredoxin consensus patterns, which have long been thought to provide the binding site for the iron-sulfur cluster N-2. The NDUFS8 cDNA contains an open reading frame of 633 bp, coding for 210 amino acids. Cycle sequencing of amplified NDUFS8 cDNA of 20 patients with isolated enzymatic complex I deficiency revealed two compound heterozygous transitions in a patient with neuropathologically proven Leigh syndrome. The first mutation was a C236T (P79L), and the second mutation was a G305A (R102H). Both mutations were absent in 70 control alleles and cosegregated within the family. A progressive clinical phenotype proceeding to death in the first months of life was expressed in the patient. In the 19 other patients with enzymatic complex I deficiency, no mutations were found in the NDUFS8 cDNA. This article describes the first molecular genetic link between a nuclear-encoded subunit of complex I and Leigh syndrome.


American Journal of Human Genetics | 1998

Demonstration of a New Pathogenic Mutation in Human Complex I Deficiency: A 5-bp Duplication in the Nuclear Gene Encoding the 18-kD (AQDQ) Subunit

Lambert van den Heuvel; Wim Ruitenbeek; Roel Smeets; Zully Gelman-Kohan; Orly Elpeleg; Jan Loeffen; Frans J.M. Trijbels; Edwin C. M. Mariman; Diederik de Bruijn; Jan A.M. Smeitink

We report the cDNA cloning, chromosomal localization, and a mutation in the human nuclear gene encoding the 18-kD (AQDQ) subunit of the mitochondrial respiratory chain complex I. The cDNA has an open reading frame of 175 amino acids and codes for a protein with a molecular mass of 23.2 kD. Its gene was mapped to chromosome 5. A homozygous 5-bp duplication, destroying a consensus phosphorylation site, in the 18-kD cDNA was found in a complex I-deficient patient. The patient showed normal muscle morphology and a remarkably nonspecific fatal progressive phenotype without increased lactate concentrations in body fluids. The childs parents were heterozygous for the mutation. In 19 other complex I-deficient patients, no mutations were found in the 18-kD gene.


Journal of Inherited Metabolic Disease | 2006

Mitochondrial complex I: structure, function and pathology.

Rolf J.R.J. Janssen; Leo Nijtmans; Lambert van den Heuvel; Jan A.M. Smeitink

SummaryOxidative phosphorylation (OXPHOS) has a prominent role in energy metabolism of the cell. Being under bigenomic control, correct biogenesis and functioning of the OXPHOS system is dependent on the finely tuned interaction between the nuclear and the mitochondrial genome. This suggests that disturbances of the system can be caused by numerous genetic defects and can result in a variety of metabolic and biochemical alterations. Consequently, OXPHOS deficiencies manifest as a broad clinical spectrum. Complex I, the biggest and most complicated enzyme complex of the OXPHOS system, has been subjected to thorough investigation in recent years. Significant progress has been made in the field of structure, composition, assembly, and pathology. Important gains in the understanding of the Goliath of the OXPHOS system are: exposing the electron transfer mechanism and solving the crystal structure of the peripheral arm, characterization of almost all subunits and some of their functions, and creating models to elucidate the assembly process with concomitant identification of assembly chaperones. Unravelling the intricate mechanisms underlying the functioning of this membrane-bound enzyme complex in health and disease will pave the way for developing adequate diagnostic procedures and advanced therapeutic treatment strategies.


Annals of Neurology | 2001

Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy.

Jan Loeffen; Orly Elpeleg; Jan A.M. Smeitink; Roel Smeets; Sylvia Stockler-Ipsiroglu; Hanna Mandel; R. C. A. Sengers; Frans J.M. Trijbels; Lambert van den Heuvel

Human complex I is built up and regulated by genes encoded by the mitochondrial DNA (mtDNA) as well as the nuclear DNA (nDNA). In recent years, attention mainly focused on the relation between complex I deficiency and mtDNA mutations. However, a high percentage of consanguinity and an autosomal‐recessive mode of inheritance observed within our patient group as well as the absence of common mtDNA mutations make a nuclear genetic cause likely. The NDUFS2 protein is part of complex I of many pro‐ and eukaryotes. The nuclear gene coding for this protein is therefore an important candidate for mutational detection studies in enzymatic complex I deficient patients. Screening of patient NDUFS2 cDNA by reverse transcriptase–polymerase chain reaction (RT‐PCR) in combination with direct DNA sequencing revealed three missense mutations resulting in the substitution of conserved amino acids in three families. Ann Neurol 2001;49:195–201


Cell Metabolism | 2010

Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

Jessica Nouws; Leo Nijtmans; Sander M. Houten; Mariël van den Brand; Martijn A. Huynen; Hanka Venselaar; Saskia J.G. Hoefs; Jolein Gloerich; Jonathan B. Kronick; Timothy P Hutchin; Peter H.G.M. Willems; Richard J. Rodenburg; Lambert van den Heuvel; Jan A.M. Smeitink; Rutger O. Vogel

Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondrial beta oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid oxidation, we describe a role for ACAD9 in oxidative phosphorylation. ACAD9 binds complex I assembly factors NDUFAF1 and Ecsit and is specifically required for the assembly of complex I. Furthermore, ACAD9 mutations result in complex I deficiency and not in disturbed long-chain fatty acid oxidation. This strongly contrasts with its evolutionary ancestor VLCAD, which we show is not required for complex I assembly and clearly plays a role in fatty acid oxidation. Our results demonstrate that two closely related metabolic enzymes have diverged at the root of the vertebrate lineage to function in two separate mitochondrial metabolic pathways and have clinical implications for the diagnosis of complex I deficiency.


BioMed Research International | 2010

Mitochondrial Translation and Beyond: Processes Implicated in Combined Oxidative Phosphorylation Deficiencies

Paulien Smits; Jan A.M. Smeitink; Lambert van den Heuvel

Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders.


American Journal of Human Genetics | 2009

Mutations in NDUFAF3 (C3ORF60), Encoding an NDUFAF4 (C6ORF66)-Interacting Complex I Assembly Protein, Cause Fatal Neonatal Mitochondrial Disease

Ann Saada; Rutger O. Vogel; Saskia J.G. Hoefs; Mariël van den Brand; Hans Wessels; Peter H.G.M. Willems; Hanka Venselaar; Avraham Shaag; Flora Barghuti; Orit Reish; Mordechai Shohat; Martijn A. Huynen; Jan A.M. Smeitink; Lambert van den Heuvel; Leo Nijtmans

Mitochondrial complex I deficiency is the most prevalent and least understood disorder of the oxidative phosphorylation system. The genetic cause of many cases of isolated complex I deficiency is unknown because of insufficient understanding of the complex I assembly process and the factors involved. We performed homozygosity mapping and gene sequencing to identify the genetic defect in five complex I-deficient patients from three different families. All patients harbored mutations in the NDUFAF3 (C3ORF60) gene, of which the pathogenic nature was assessed by NDUFAF3-GFP baculovirus complementation in fibroblasts. We found that NDUFAF3 is a genuine mitochondrial complex I assembly protein that interacts with complex I subunits. Furthermore, we show that NDUFAF3 tightly interacts with NDUFAF4 (C6ORF66), a protein previously implicated in complex I deficiency. Additional gene conservation analysis links NDUFAF3 to bacterial-membrane-insertion gene cluster SecF/SecD/YajC and to C8ORF38, also implicated in complex I deficiency. These data not only show that NDUFAF3 mutations cause complex I deficiency but also relate different complex I disease genes by the close cooperation of their encoded proteins during the assembly process.


American Journal of Human Genetics | 1997

Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient

Marjan Huizing; Vito Iacobazzi; Lodewijk IJlst; Paul J.M. Savelkoul; Wim Ruitenbeek; Lambert van den Heuvel; Cesare Indiveri; Jan A.M. Smeitink; Frans J.M. Trijbels; Ferdinando Palmieri

The carnitine-acylcarnitine carrier (CAC) catalyzes the translocation of long-chain fatty acids across the inner mitochondrial membrane. We cloned and sequenced the human CAC cDNA, which has an open reading frame of 903 nucleotides. Northern blot studies revealed different expression levels of CAC in various human tissues. Furthermore, mutation analysis was performed for a CAC-deficient infant. Direct sequencing of the patients cDNA revealed a homozygous cytosine nucleotide insertion. This insertion provokes a frameshift and an extension of the open reading frame with 23 novel codons. This is the first report documenting a mutation, in the CAC cDNA, responsible for mitochondrial beta-oxidation impairment.


American Journal of Human Genetics | 1999

Human mitochondrial complex I in health and disease.

Jan A.M. Smeitink; Lambert van den Heuvel

The authors are very grateful to Prof. Rob Sengers and Prof. Frans Trijbels, who founded the Nijmegen Center for Mitochondrial Disorders >20 years ago and who supported us throughout this large-scale project. We cordially thank all the Ph.D. students (Jan Loeffen, Ralf Triepels, Markus Schuelke, Sandy Budde, and Marieke Coenen) and technicians (Roel Smeets, Carin Buskens, Antoon Janssen, and Frans van den Brand) for their enthusiasm and the work they performed in achieving this first part of our research program. The Prinses Beatrix Fonds, the Stichting voor Kinderen die willen maar niet kunnen, and the Fonds Beoefening Wetenschap of the Nijmegen Childrens Hospital are gratefully acknowledged for their financial support.

Collaboration


Dive into the Lambert van den Heuvel's collaboration.

Top Co-Authors

Avatar

Jan A.M. Smeitink

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo Nijtmans

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Roel Smeets

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dineke Westra

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Elena Volokhina

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Hans Wessels

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Elena Levtchenko

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge