Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lambertus J. van de Burgt is active.

Publication


Featured researches published by Lambertus J. van de Burgt.


Nature Communications | 2017

One-dimensional organic lead halide perovskites with efficient bluish white-light emission.

Zhao Yuan; Chenkun Zhou; Yu Tian; Yu Shu; Joshua Messier; Jamie C. Wang; Lambertus J. van de Burgt; Konstantinos Kountouriotis; Yan Xin; Ethan Holt; Kirk S. Schanze; Ronald J. Clark; T. Siegrist; Biwu Ma

Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.


Advanced Materials | 2010

Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites.

Adrian Lita; Aaron L. Washington; Lambertus J. van de Burgt; Geoffrey F. Strouse; A. E. Stiegman

1 ] Two approaches to the development of solid-state lighting have been successfully implemented in commercially available white-light light-emitting diodes (LEDs). One method is the use of a phosphor conversion diode, in which a photodiode, emitting UV light, excites a phosphor (or group of phosphors), which then emits, singularly or collectively, white light.


Science | 2016

Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state

Mark A. Silver; Samantha K. Cary; Jason A. Johnson; R. E. Baumbach; Alexandra A. Arico; Morgan Luckey; Matthew Urban; Jamie C. Wang; Matthew J. Polinski; Alexander T. Chemey; Guokui Liu; Kuan-Wen Chen; Shelley M. Van Cleve; Matthew L. Marsh; Teresa M. Eaton; Lambertus J. van de Burgt; Ashley L. Gray; David E. Hobart; Kenneth Hanson; Laurent Maron; Frédéric Gendron; Jochen Autschbach; Manfred Speldrich; Paul Kögerler; Ping Yang; Jenifer C. Braley; Thomas E. Albrecht-Schmitt

Bonding to berkelium A geographical theme prevailed in the recent naming of the heaviest chemical elements. The choices brought to mind berkelium (Bk) and californium (Cf), the names chosen for elements 97 and 98 over half a century ago. Silver et al. now revisit the chemistry of Bk, which has proven fiercely challenging to study over the years on account of its vigorous radioactive decay. Synthetic crystallized Bk borate and dipicolinate compounds structurally resembled Cf analogs in the solid state but manifested distinct electronic and magnetic characteristics stemming from spin-orbit coupling effects. Science, this issue p. 888 Experiments and theory probe the coordination chemistry of a highly radioactive heavy element. INTRODUCTION Developing the chemistry of late actinides is hindered by the lack of availability of isotopes, the need for specialized research facilities, and the nuclear instability of the elements. Berkelium represents one of the last elements that can be prepared on a milligram scale in nuclear reactors. However, its only available isotope, 249Bk, has a half-life of only 320 days, which has greatly curtailed the expansion of its chemistry and fundamental exploration of how large relativistic and spin-orbit coupling effects alter its electronic structure. Furthermore, data gathered from Bk(III) in aqueous media suggest that its coordination may be different from that of earlier actinides. However, a single-crystal structure of a berkelium compound has remained elusive, leaving unanswered whether these structural changes occur in the solid state. RATIONALE This work focuses on characterizing two distinct berkelium compounds on the milligram scale. In particular, the goal was to obtain crystals of these compounds that could be used in structure determinations and physical property measurements. Two compounds were selected: a coordination complex of dipicolinate and a borate. Dipicolinate complexation occurs with most other lanthanides and actinides in the +3 oxidation state, facilitating comparisons across the series to discern periodic trends. In the borate family, the structural frameworks are hypersensitive to the nature of the bonding at the metal center and are rearranged accordingly. Modeling the experimental data using a variety of computational techniques allows us to deconvolute the role of covalent bonding and spin-orbit coupling in determining the electronic properties of berkelium. RESULTS Experiments with milligram quantities of 249Bk were choreographed for 6 months before the arrival of the isotope because the total quantity used in the studies was 13 mg, which corresponds to a specific activity of 21 Ci. Although this isotope is a low-energy β emitter, it decays to 249Cf at a rate of about 1.2% per week, and the latter produces hard γ radiation that represents a serious external hazard. In addition, the samples described in this work undergo about 1012 decays per second. This rapid decomposition necessitated the development of techniques for swiftly preparing and encapsulating samples and for collecting all structural and spectroscopic data within 24 hours of crystal formation. After this preparation, the single-crystal structures of Bk(III)tris(dipicolinate) and Bk(III) borate were determined. The latter compound has the same topology as that of californium(III) (Cf) and contains an eight-coordinate BkO8 unit. This reduction in coordination number is consistent with previous solution-phase x-ray absorption measurements and indicates that a drop in coordination number in the actinide series from nine to eight begins at berkelium. The magnetic and optical properties of these samples were also measured. The red luminescence from Bk(III) was similar in nature to that of curium(III) and is primarily based on an f-f transition. The ingrowth of the broad green luminescence from Cf(III), which is caused by a ligand-to-metal charge transfer, was shown to be distinct in nature from that originating from Bk(III). Ligand-field, density functional theory, and wave-function calculations were used to understand the spectroscopic features and revealed that the single largest contributor to the unexpected electronic properties of Bk(III) is spin-orbit coupling. This effect mixes the first excited state with the ground state and causes a large deviation from a pure Russell-Saunders state. The reduction in the measured magnetic moment for these samples from that calculated for an f8 electron configuration is primarily attributable to this multiconfigurational ground state. CONCLUSION The crystallographic data indicate that Bk(III) shares more structural similarities with Cf(III) than with Cm(III). However, ligand-field effects are more similar between Bk(III) and Cm(III). Terbium (Tb), in the lanthanide series, represents the closest analog of Bk because the trivalent cations possess 4f8 and 5f8 configurations, respectively. Spin-orbit coupling in Bk(III) creates mixing of the first excited state (5G6) with the ground state. In contrast, the ground state of the Tb(III)tris(dipicolinate) contains negligible contributions of this type. An overall conclusion from this study is that spin-orbit coupling plays a large role in determining the ground state of late actinide compounds. Crystal structure of a berkelium coordination compound. The central Bk(III) ion is coordinated by three monoprotonated dipicolinate ligands in tridentate O,N,O fashion. Bk, yellow; C, gray; N, blue; O, red; H, white. Berkelium is positioned at a crucial location in the actinide series between the inherently stable half-filled 5f7 configuration of curium and the abrupt transition in chemical behavior created by the onset of a metastable divalent state that starts at californium. However, the mere 320-day half-life of berkelium’s only available isotope, 249Bk, has hindered in-depth studies of the element’s coordination chemistry. Herein, we report the synthesis and detailed solid-state and solution-phase characterization of a berkelium coordination complex, Bk(III)tris(dipicolinate), as well as a chemically distinct Bk(III) borate material for comparison. We demonstrate that berkelium’s complexation is analogous to that of californium. However, from a range of spectroscopic techniques and quantum mechanical calculations, it is clear that spin-orbit coupling contributes significantly to berkelium’s multiconfigurational ground state.


Journal of Materials Chemistry | 2005

Raman spectroscopy of discrete silica supported vanadium oxide: assignment of fundamental stretching modes

Cristina Moisii; Matthew D. Curran; Lambertus J. van de Burgt; A. E. Stiegman

Homogeneous vanadia–silica xerogels containing vanadium loadings up to 14 mol% were investigated by Raman spectroscopy. The materials are completely amorphous and contain vanadia substituted into the continuous random network of the silica. The optical properties afford Raman spectra with very good signal to noise allowing resolution of the vanadium associated vibrational modes even at low concentrations of vanadium. From the study, assignment of the symmetric interfacial Si–O–V stretch was made at 930 cm−1, and at high concentrations of vanadium the formation of V–O–V linkages was observed at 686 cm−1. Also assigned was a transition associated with a perturbed silica mode at 1070 cm−1.


Journal of the American Chemical Society | 2017

Electronic Structure and Properties of Berkelium Iodates

Mark A. Silver; Samantha K. Cary; Alejandro J. Garza; R. E. Baumbach; Alexandra A. Arico; Gregory A. Galmin; K. W. Chen; Jason A. Johnson; Jamie C. Wang; Ronald J. Clark; Alexander T. Chemey; Teresa M. Eaton; Matthew L. Marsh; Kevin Seidler; Shane S. Galley; Lambertus J. van de Burgt; Ashley L. Gray; David E. Hobart; Kenneth Hanson; Shelley M. Van Cleve; Frédéric Gendron; Jochen Autschbach; Gustavo E. Scuseria; Laurent Maron; Manfred Speldrich; Paul Kögerler; Cristian Celis-Barros; Dayán Páez-Hernández; Ramiro Arratia-Pérez; Michael Ruf

The reaction of 249Bk(OH)4 with iodate under hydrothermal conditions results in the formation of Bk(IO3)3 as the major product with trace amounts of Bk(IO3)4 also crystallizing from the reaction mixture. The structure of Bk(IO3)3 consists of nine-coordinate BkIII cations that are bridged by iodate anions to yield layers that are isomorphous with those found for AmIII, CfIII, and with lanthanides that possess similar ionic radii. Bk(IO3)4 was expected to adopt the same structure as M(IO3)4 (M = Ce, Np, Pu), but instead parallels the structural chemistry of the smaller ZrIV cation. BkIII-O and BkIV-O bond lengths are shorter than anticipated and provide further support for a postcurium break in the actinide series. Photoluminescence and absorption spectra collected from single crystals of Bk(IO3)4 show evidence for doping with BkIII in these crystals. In addition to luminescence from BkIII in the Bk(IO3)4 crystals, a broad-band absorption feature is initially present that is similar to features observed in systems with intervalence charge transfer. However, the high-specific activity of 249Bk (t1/2 = 320 d) causes oxidation of BkIII and only BkIV is present after a few days with concomitant loss of both the BkIII luminescence and the broadband feature. The electronic structure of Bk(IO3)3 and Bk(IO3)4 were examined using a range of computational methods that include density functional theory both on clusters and on periodic structures, relativistic ab initio wave function calculations that incorporate spin-orbit coupling (CASSCF), and by a full-model Hamiltonian with spin-orbit coupling and Slater-Condon parameters (CONDON). Some of these methods provide evidence for an asymmetric ground state present in BkIV that does not strictly adhere to Russel-Saunders coupling and Hunds Rule even though it possesses a half-filled 5f 7 shell. Multiple factors contribute to the asymmetry that include 5f electrons being present in microstates that are not solely spin up, spin-orbit coupling induced mixing of low-lying excited states with the ground state, and covalency in the BkIV-O bonds that distributes the 5f electrons onto the ligands. These factors are absent or diminished in other f7 ions such as GdIII or CmIII.


Inorganic Chemistry | 2011

Synthesis, characterization, and spectroscopic characteristics of chromium(6+) and -(4+) silicalite-2 (ZSM-11) materials.

Adrian Lita; Yuchuan Tao; Xisai Ma; Lambertus J. van de Burgt; A. E. Stiegman

The systematic incorporation of Cr ions into a phase-pure silicalite-2 lattice was accomplished through hydrothermal synthesis using 3,5-dimethylpiperidinium as a templating agent. The Cr ions, after calcination to remove the template, were in the 6+ oxidation state, with their incorporation into the lattice verified by the systematic expansion of the unit cell as a function of Cr loading. The structures of these materials as revealed by electronic spectroscopy and X-ray absorption near-edge spectroscopy (XANES) were consistent with the dioxo structure typically exhibited by Cr(6+) in an amorphous silica matrix. These materials were highly luminescent, with the emission spectra showing an unusually well-resolved vibronic structure characteristic of an emissive site with little inhomogeneous broadening. The site was reduced under flowing CO to Cr(4+), as characterized by XANES. The reduction of Cr from 6+ to 4+ resulted in unit-cell volumes that are systematically smaller than those observed with Cr(6+), even though the ionic radius of Cr(4+) is larger. This is attributed to the fact that the Cr(6+) site is not a simple metal ion but a significantly larger [CrO(2)](2+) unit, requiring a larger lattice expansion to accommodate it. Through analysis of the XANES preedge and assignment of the ligand-field spectrum of the Cr(4+) ions, it is possible to establish isomorphic substitution into the silicalite lattice.


Journal of The Chemical Society, Chemical Communications | 1987

Associative substitution reactions in 17 electron organometallic radicals: direct observation of the reaction of [(C5H5)Fe(CO)2]· with P(OMe)3 using very fast time-resolved i.r. spectroscopy

Andrew J. Dixon; Steven J. Gravelle; Lambertus J. van de Burgt; Martyn Poliakoff; James J. Turner; Eric Weitz

Time-resolved i.r. spectroscopy is used to monitor directly the formation of [(C5H5)Fe(CO)P(OMe)3]· in the reaction of P(OMe)3 with [(C5H5)Fe(CO)2]·, generated by 351 nm photolysis of [{(C5H5)Fe(CO)2}2] in n-heptane solution at room temperature; the reaction is an associative process with a bimolecular rate constant of 8.9 ± 2.0 × 108 dm3 mol–1 s–1.


Inorganic Chemistry | 2012

Metal Site-Mediated, Thermally Induced Structural Changes in Cr6+-Silicalite-2 (MEL) Molecular Sieves

Yuchuan Tao; Adrian Lita; Lambertus J. van de Burgt; Haidong Zhou; A. E. Stiegman

Cr(6+) ions were incorporated into the lattice sites of phase-pure silicalite-2 made using 3,5-dimethylpiperidinium as a structure-directing agent. The materials exhibited a remarkably well-resolved vibronic emission consisting of a high frequency progression of 987 cm(-1), which was assigned to the fundamental symmetric stretching mode of the (Si-O-)(2)Cr(═O)(2) group dominated by the terminal Cr═O stretch. A low frequency progression at 214 cm(-1), which was assigned to a symmetric O-Cr-O bending mode, was built on each band of the 987 cm(-1) progression. Studies of the vibronic structure of the emission spectrum as a function of temperature and Cr ion concentration reveal an abrupt change in the Franck-Condon factor of the emission at 20 K for samples with very low Cr concentrations (0.03 mol %). The change in the Franck-Condon factor is attributed to a temperature-induced structural change in the coordination sphere of the metal ion. This structural change was found to be accompanied by a concomitant structural change in the lattice structure of the silicalite-2. This structural change, as studied by temperature-dependent X-ray diffraction, did not involve a crystallographic phase change but an abrupt decrease in the unit cell volume, caused specifically by a decrease in the c-axis. This structural change was not observed in pure silicalite-2, indicating that it is not intrinsic to the silicalite lattice. Moreover, no similar structural change was observed at higher Cr loading (1 mol %). This suggests that the presence of the Cr ions and the changes in the coordination geometry they undergo at low temperature induced the observed contraction in the silicalite-2 lattice, in effect acting as a thermal switch that decreases the unit cell volume.


Inorganic Chemistry | 2015

Ca12InC13-x and Ba12InC18H4: alkaline-earth indium allenylides synthesized in AE/Li flux (AE = Ca, Ba).

Trevor V. Blankenship; Matthew J. Dickman; Lambertus J. van de Burgt; Susan E. Latturner

Two new complex main-group metal carbides were synthesized from reactions of indium, carbon, and a metal hydride in metal flux mixtures of an alkaline earth (AE = Ca, Ba) and lithium. Ca(12)InC(13-x) and Ba(12)InC(18)H(4) both crystallize in cubic space group Im3̅ [a = 9.6055(8) and 11.1447(7) Å, respectively]. Their related structures are both built on a body-centered-cubic array of icosahedral clusters comprised of an indium atom and 12 surrounding alkaline-earth cations; these clusters are connected by bridging monatomic anions (either H(-) or C(4-)) and allenylide anions, C(3)(4-). The allenylide anions were characterized by Raman spectroscopy and hydrolysis studies. Density of states and crystal orbital Hamilton population calculations confirm that both compounds are metallic.


Journal of Physical Chemistry A | 2008

Photothermal Initiation of Hybrid Organic/Inorganic Metastable Interstitial Composites: Synergistic Effects on the Dynamics of Energy Release

Melissa Mileham; Chi-Dong Park; Lambertus J. van de Burgt; Michael P. Kramer; A. E. Stiegman

The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium.

Collaboration


Dive into the Lambertus J. van de Burgt's collaboration.

Top Co-Authors

Avatar

A. E. Stiegman

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Adrian Lita

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Jamie C. Wang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Kenneth Hanson

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan Peek

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biwu Ma

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Chenkun Zhou

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge