Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lamiaa A. Ahmed is active.

Publication


Featured researches published by Lamiaa A. Ahmed.


European Journal of Pharmacology | 2011

Pharmacological preconditioning with nicorandil and pioglitazone attenuates myocardial ischemia/reperfusion injury in rats.

Lamiaa A. Ahmed; Hesham Salem; Amina S. Attia; Azza M. Agha

The present investigation was designed to study the cardioprotective effects of nicorandil and pioglitazone preconditioning in myocardial ischemia/reperfusion-induced hemodynamic, biochemical and histological changes in rats. Oral doses of nicorandil (3 or 6 mg/kg) and pioglitazone (10 or 20mg/kg) were administered once daily for 5 consecutive days. Rats were then subjected to myocardial ischemia/reperfusion (40 min/10 min). Heart rate and ventricular arrhythmias were recorded during ischemia/reperfusion progress. At the end of reperfusion, plasma creatine kinase-MB activity and total nitrate/nitrite were determined. In addition, lactate, adenine nucleotides, thiobarbituric acid reactive substances, reduced glutathione and myeloperoxidase activity were estimated in the heart left ventricle. Finally, histological examination was performed to visualize the protective cellular effects of different pretreatments. Nicorandil (3 or 6 mg/kg) was effective in attenuating the ischemia/reperfusion-induced ventricular arrhythmias, creatine kinase-MB release, lactate accumulation and oxidative stress. Nicorandil (3 mg/kg) was more effective in improving the energy production and lowering the elevated myeloperoxidase activity. Both doses of pioglitazone (10 or 20 mg/kg) were equally effective in reducing lactate accumulation and completely counteracting the oxidative stress. Pioglitazone (10 mg/kg) was more effective in improving energy production and reducing ventricular arrhythmias, plasma creatine kinase-MB release and total nitrate/nitrite. It seems that selective mitochondrial K(ATP) channel opening by lower doses of nicorandil and pioglitazone in the present study provided more cardioprotection against ventricular arrhythmias and biochemical changes induced by ischemia/reperfusion. Histological examination revealed also better improvement by the lower dose of nicorandil than that of pioglitazone.


PLOS ONE | 2014

Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

Lamiaa A. Ahmed; Nagwa Ibrahim Shehata; Noha F. Abdelkader; Mahmoud M. Khattab

Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.


Chemico-Biological Interactions | 2014

Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats.

Maha M. El-Sawalhi; Lamiaa A. Ahmed

Despite the clinical reports, few studies have focused on reducing the cardiotoxicity of cisplatin. In the present study, cardiotoxicity was examined after a single ip injection of cisplatin (7mg/kg) in rats. Apocynin was given in drinking water (600mg/L) for five successive days before and after cisplatin injection. At the end of the experiment, hemodynamic parameters were recorded, animals were sacrificed and serum creatine kinase-MB activity was determined. The whole ventricle was isolated for estimation of tumor necrosis factor-alpha (TNF-α) content, NADPH oxidase, myeloperoxidase and caspase-3 activities in addition to nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor kappa B (NF-κB) gene expressions. Furthermore, oxidative stress markers and antioxidant enzymes were measured in postmitochondrial and mitochondrial fractions. Mitochondrial membrane potential, nuclear DNA fragmentation and cardiomyocyte cross-sectional area were also evaluated. Apocynin was effective against cisplatin-induced decrement in heart rate and blood pressure. Moreover, pretreatment with apocynin notably ameliorated the state of oxidative stress, mitigated inflammation and preserved mitochondrial membrane potential. Apocynin provided also a significant cardioprotection as revealed by alleviating the overexpression of Nrf2, HO-1 and NF-κB, the elevation of caspase-3 activity, the prominent nuclear DNA fragmentation and the decreased cardiomyocyte cross-sectional area. This study highlights the potential role of apocynin in inhibiting cisplatin-induced hemodynamic changes, postmitochondrial and mitochondrial damage as indicated by improvement in the state of oxidative stress, inflammation and apoptosis.


Biochemical Pharmacology | 2013

Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection.

Lamiaa A. Ahmed; Shohda A. El-Maraghy

Despite of its known cardiotoxicity, doxorubicin is still a highly effective anti-neoplastic agent in the treatment of several cancers. In the present study, the cardioprotective effect of nicorandil was investigated on hemodynamic alterations and mitochondrial dysfunction induced by cumulative administration of doxorubicin in rats. Doxorubicin was injected i.p. over 2 weeks to obtain a cumulative dose of 18 mg/kg. Nicorandil (3 mg/kg/day) was given orally with or without doxorubicin treatment. Heart rate and aortic blood flow were recorded 24 h after receiving the last dose of doxorubicin. Rats were then sacrificed and hearts were rapidly excised for estimation of caspase-3 activity, phosphocreatine and adenine nucleotides contents in addition to cytochrome c, Bcl2, Bax and caspase 3 expression. Moreover, mitochondrial oxidative phosphorylation capacity, creatine kinase activity and oxidative stress markers were measured together with the examination of DNA fragmentation and ultrastructural changes. Nicorandil was effective in alleviating the decrement of heart rate and aortic blood flow and the state of mitochondrial oxidative stress induced by doxorubicin cardiotoxicity. Nicorandil also preserved phosphocreatine and adenine nucleotides contents by restoring mitochondrial oxidative phosphorylation capacity and creatine kinase activity. Moreover, nicorandil provided a significant cardioprotection via inhibition of apoptotic signaling pathway, DNA fragmentation and mitochondrial ultrastructural changes. Interestingly, nicorandil did not interfere with cytotoxic effect of doxorubicin against the growth of solid Ehrlich carcinoma. In conclusion, nicorandil was effective against the development of doxorubicin-induced heart failure in rats as indicated by improvement of hemodynamic perturbations, mitochondrial dysfunction and ultrastructural changes without affecting its antitumor activity.


European Journal of Pharmacology | 2014

Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats

Lamiaa A. Ahmed; Al Arqam Z. Obaid; Hala F. Zaki; Azza M. Agha

Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats.


Journal of Pharmacy and Pharmacology | 2009

Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats

Lamiaa A. Ahmed; Hesham Salem; Amina S. Attia; Mostafa E. El-sayed

Objectives To investigate the possible modification of the cardioprotective effect of amlodipine when co‐administered with quercetin in myocardial ischaemia/reperfusion‐induced functional, metabolic and cellular alterations in rats.


European Journal of Pharmaceutical Sciences | 2014

Naringenin adds to the protective effect of l-arginine in monocrotaline-induced pulmonary hypertension in rats: Favorable modulation of oxidative stress, inflammation and nitric oxide

Lamiaa A. Ahmed; Al Arqam Z. Obaid; Hala F. Zaki; Azza M. Agha

The present study was directed to investigate the possible modulatory effect of naringenin when co-administered with L-arginine in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). L-arginine (500 mg/kg) and naringenin (50 mg/kg) were orally administered daily, alone and in combination, for 3 weeks. Mean arterial blood pressure, electrocardiography and echocardiography were then recorded and rats were sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Combined therapy provided a significant improvement in L-arginine protective effect toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline treatment. Furthermore, combined therapy prevented monocrotaline-induced changes in endothelial and inducible nitric oxide synthase protein expression as well as histological analysis compared with either treatment alone. In conclusion, naringenin significantly adds to the protective effect of L-arginine in pulmonary hypertension induced by monocrotaline in rats.


Life Sciences | 2012

Comparative study of the cardioprotective effects of local and remote preconditioning in ischemia/reperfusion injury

Lamiaa A. Ahmed; Hesham Salem; Amina S. Attia; Azza M. Agha

AIMS Though the cardioprotective effects of local or remote preconditioning have been estimated, it is still unclear which of them is more reliable and provides more cardioprotection. The present investigation was directed to compare, in one study, the cardioprotective effects of different cycles of local or remote preconditioning in ischemia/reperfusion (I/R)-induced electrophysiological, biochemical and histological changes in rats. MAIN METHODS Rats were randomly assigned into 10 groups. Groups 1 and 2 were normal and I/R groups, respectively. Other groups were subjected to 1, 2, 3, 4 cycles of local or remote preconditioning before myocardial I/R (40 min/10 min). Heart rate and ventricular arrhythmias were recorded during I/R progress. At the end of reperfusion, plasma creatine kinase-MB (CK-MB) activity and total nitrate/nitrite (NO(x)) were determined. In addition, lactate, adenine nucleotides, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and myeloperoxidase (MPO) activity were estimated in the heart left ventricle. Histological examination was also performed to visualize the protective cellular effects of the effective cycle of local or remote preconditioning. KEY FINDINGS In general, local preconditioning was more effective than remote preconditioning in reducing ventricular arrhythmias, CK-MB release, lactate accumulation and elevated MPO activity as well as preserving adenine nucleotides. Concerning the most effective group in each therapy, 3 cycles of local preconditioning provided more cardioprotection than that of remote preconditioning in the histological examination. SIGNIFICANCE Despite being invasive, local preconditioning provided more effective cardioprotection than remote preconditioning in ameliorating the overall electrophysiological, biochemical and histological changes.


Scientific Reports | 2015

Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats.

Lamiaa A. Ahmed; Shohda A. El-Maraghy; Sherine M. Rizk

This study is the first to investigate the role of the KATP channel in the possible protection mediated by nicorandil against cyclophosphamide-induced lung and testicular toxicity in rats. Animals received cyclophosphamide (150 mg/kg/day, i.p.) for 2 consecutive days and then were untreated for the following 5 days. Nicorandil (3 mg/kg/day, p.o.) was administered starting from the day of cyclophosphamide injection with or without glibenclamide (5 mg/kg/day, p.o.). Nicorandil administration significantly reduced the cyclophosphamide-induced deterioration of testicular function, as demonstrated by increases in the level of serum testosterone and the activities of the testicular 3β- hydroxysteroid, 17β-hydroxysteroid and sorbitol dehydrogenases. Furthermore, nicorandil significantly alleviated oxidative stress (as determined by lipid peroxides and reduced glutathione levels and total antioxidant capacity), as well as inflammatory markers (tumour necrosis factor-α and interleukin-1β), in bronchoalveolar lavage fluid and testicular tissue. Finally, the therapy decreased the levels of fibrogenic markers (transforming growth factor-β and hydroxyproline) and ameliorated the histological alterations (as assessed by lung fibrosis grading and testicular Johnsen scores). The co-administration of glibenclamide (a KATP channel blocker) blocked the protective effects of nicorandil. In conclusion, KATP channel activation plays an important role in the protective effect of nicorandil against cyclophosphamide-induced lung and testicular toxicity.


Scandinavian Journal of Clinical & Laboratory Investigation | 2012

Cardioprotective effects of ozone oxidative preconditioning in an in vivo model of ischemia/reperfusion injury in rats

Lamiaa A. Ahmed; Hesham Salem; Mohamed N. Mawsouf; Amina S. Attia; Azza M. Agha

Abstract Background. Several studies have demonstrated the beneficial effects of ozone oxidative preconditioning in several pathologies characterized by cellular oxidative and inflammatory burden. The present study was designed to investigate the cardioprotective effects of oxidative preconditioning in ischemia/reperfusion (I/R) injury. Methods. Rats were randomly assigned into five groups. Groups 1 and 2 were normal and I/R groups, respectively. Two of the other groups received two different doses of ozone therapies by rectal insufflations. The last group received vehicle (oxygen). Rats were subjected to myocardial I/R (40min/10min). Heart rate and ventricular arrhythmias were recorded during I/R progress. At the end of reperfusion, plasma creatine kinase-MB (CK-MB) activity and total nitrate/nitrite (NOx) were determined. In addition, lactate, adenine nucleotides, thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and myeloperoxidase (MPO) activity were estimated in the heart left ventricle. Histological examination was also performed to visualize the protective cellular effects. Results. Both doses of ozone therapy were equally protective in reducing CK-MB release. However, the higher dose was more effective in reducing oxidative stress, lactate accumulation, elevated MPO activity and plasma NOx as well as preserving myocardial adenine nucleotides. Histological examination also revealed better improvement with a higher dose of ozone therapy compared to the I/R group. Conclusion. Ozone therapy can afford significant cardioprotection against biochemical and histological changes associated with I/R injury.

Collaboration


Dive into the Lamiaa A. Ahmed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge