Lamiaa A. Shaala
King Abdulaziz University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lamiaa A. Shaala.
Journal of Natural Products | 2010
Hossam M. Hassan; Mohammad A. Khanfar; Ahmed Y. Elnagar; Rabab Mohammed; Lamiaa A. Shaala; Diaa T. A. Youssef; Mohamed S. Hifnawy; Khalid A. El Sayed
Alcyonaria species are among the important marine invertebrate classes that produce a wealth of chemically diverse bioactive diterpenes. Examples of these are the potent microtubule disruptor sarcodictyins and eleutherobin. The genus Cladiella has proven to be a rich source of cytotoxic eunicellin-based diterpenoids. Five new eunicellin diterpenes, pachycladins A-E (1-5), were isolated from the Red Sea soft coral Cladiella pachyclados. The known sclerophytin A Cladiellisin, 3-acetylcladiellisin, 3,6-diacetylcladiellisin, (+)-polyanthelin A, klysimplexin G, klysimplexin E, sclerophytin F methyl ether, (6Z)-cladiellin (cladiella-6Z,11(17)-dien-3-ol), sclerophytin B, and patagonicol were also identified. The structures of the isolated compounds were elucidated by extensive interpretation of their spectroscopic data. These compounds were evaluated for their ability to inhibit growth, proliferation, invasion, and migration of the prostate cancer cells PC-3. Some of the new metabolites exhibited significant anti-invasive activity.
Journal of Natural Products | 2013
Christopher C. Thornburg; Elise S. Cowley; Justyna Sikorska; Lamiaa A. Shaala; Jane E. Ishmael; Diaa T. A. Youssef; Kerry L. McPhail
Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B, and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC₅₀ = 3.4 and 89.9 nM, respectively) provides further insight into the structure-activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche.
Journal of Natural Products | 2011
Christopher C. Thornburg; Muralidhara Thimmaiah; Lamiaa A. Shaala; Andrew M. Hau; Jay M. Malmo; Jane E. Ishmael; Diaa T. A. Youssef; Kerry L. McPhail
Two new grassypeptolides and a lyngbyastatin analogue, together with the known dolastatin 12, have been isolated from field collections and laboratory cultures of the marine cyanobacterium Leptolyngbya sp. collected from the SS Thistlegorm shipwreck in the Red Sea. The overall stereostructures of grassypeptolides D (1) and E (2) and Ibu-epidemethoxylyngbyastatin 3 (3) were determined by a combination of 1D and 2D NMR experiments, MS analysis, Marfeys methodology, and HPLC-MS. Compounds 1 and 2 contain 2-methyl-3-aminobutyric acid and 2-aminobutyric acid, while biosynthetically distinct 3 contains 3-amino-2-methylhexanoic acid and the β-keto amino acid 4-amino-2,2-dimethyl-3-oxopentanoic acid (Ibu). Grassypeptolides D (1) and E (2) showed significant cytotoxicity to HeLa (IC₅₀ = 335 and 192 nM, respectively) and mouse neuro-2a blastoma cells (IC₅₀ = 599 and 407 nM, respectively), in contrast to Ibu-epidemethoxylyngbyastatin 3 (neuro-2a cells, IC₅₀ > 10 μM) and dolastatin 12 (neuro-2a cells, IC₅₀ > 1 μM).
Journal of Natural Products | 2009
Sandeep Jain; Ioana Abraham; Paulo Carvalho; Yehong Kuang; Lamiaa A. Shaala; Diaa T. A. Youssef; Mitchell A. Avery; Zhe-Sheng Chen; Khalid A. El Sayed
This study reports the isolation of nine new terpenoids (2-10), possessing two novel skeletons, from the Red Sea sponge Callyspongia (=Siphonochalina) siphonella. The identity of these novel skeletons was based on X-ray crystallography and extensive spectral analyses. These compounds were evaluated for their ability to reverse P-glycoprotein (P-gp)-mediated multidrug resistance in human epidermoid cancer cells. Sipholenone E (3) was better than sipholenol A (1), a known P-gp modulator from this sponge, in reversing the P-gp-mediated multidrug resistance. Sipholenol L (6) and siphonellinol D (8) were nearly as active as sipholenol A. On the basis of X-ray crystallographic data and the established identity of 3-7, the structure of sipholenol I (11) is revised. A pharmacophore model of three hydrophobic points and two H-bond acceptors was generated for the active sipholane P-gp modulators.
Journal of Natural Products | 2008
Mohamed Abou-Shoer; Lamiaa A. Shaala; Diaa T. A. Youssef; Jihan M. Badr; Abdel-Azim M. Habib
Reinvestigation of the Red Sea sponge Suberea mollis afforded two new bromotyrosine-derived alkaloids, subereamollines A (1) and B (2), two new brominated phenolic compounds, subereaphenols B (7) and C (9), and the known compounds aerothionin (3), homoaerothionin (4), 11,19-dideoxyfistularin-3 (5), aeroplysinin-1 (6), and aeroplysinin-2 (8). The structure determination of the isolated compounds was assigned using one- and two-dimensional NMR spectra and HRFABMS data. The antimicrobial and antioxidant activities of the isolated compounds have been evaluated. Aeroplysinin-1 displayed significant antimicrobial activity against S. aureus, P. aerugenosa, and K. pneumoniae. The isolated compounds were examined for their antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) solution-based chemical assay. Among the tested compounds, only subereaphenols B and C displayed a significant effect.
Marine Drugs | 2014
Diaa T. A. Youssef; Lamiaa A. Shaala; Gamal A. Mohamed; Jihan M. Badr; Faida H. Bamanie; Sabrin R.M. Ibrahim
In our search for bioactive metabolites from marine organisms, we have investigated the polar fraction of the organic extract of the Red Sea sponge Theonella swinhoei. Successive chromatographic separations and final HPLC purification of the potent antifungal fraction afforded a new bicyclic glycopeptide, theonellamide G (1). The structure of the peptide was determined using extensive 1D and 2D NMR and high-resolution mass spectral determinations. The absolute configuration of theonellamide G was determined by chemical degradation and 2D NMR spectroscopy. Theonellamide G showed potent antifungal activity towards wild and amphotericin B-resistant strains of Candida albicans with IC50 of 4.49 and 2.0 μM, respectively. Additionally, it displayed cytotoxic activity against the human colon adenocarcinoma cell line (HCT-16) with IC50 of 6.0 μM. These findings provide further insight into the chemical diversity and biological activities of this class of compounds.
Marine Drugs | 2012
Lamiaa A. Shaala; Diaa T. A. Youssef; Mansour I. Sulaiman; Fathy A. Behery; Ahmed I. Foudah; Khalid A. El Sayed
A new collection of several Red Sea sponges was investigated for the discovery of potential breast cancer migration inhibitors. Extracts of the Verongid sponges Pseudoceratina arabica and Suberea mollis were selected. Bioassay-directed fractionation of both sponges, using the wound-healing assay, resulted into the isolation of several new and known brominated alkaloids. Active fractions of the sponge Pseudoceratina arabica afforded five new alkaloids, ceratinines A–E (2–6), together with the known alkaloids moloka’iamine (1), hydroxymoloka’iamine (7) and moloka’iakitamide (8). The active fraction of the sponge Suberea mollis afforded the three known alkaloids subereamolline A (9), aerothionin (10) and homoaerothionin (11). Ceratinine B (3) possesses an unprecedented 5,7-dibrominated dihydroindole moiety with an epoxy ring on the side chain of a fully substituted aromatic moiety. Ceratinines D (5) and E (6) possess a terminal formamide moiety at the ethylamine side chain. Subereamolline A (9) potently inhibited the migration and invasion of the highly metastatic human breast cancer cells MDA-MB-231 at the nanomolar doses. Subereamolline A and related brominated alkaloids are novel scaffolds appropriate for further future use for the control of metastatic breast cancer.
Journal of Natural Products | 2011
Lamiaa A. Shaala; Faida H. Bamane; Jihan M. Badr; Diaa T. A. Youssef
Investigation of a new collection of the Red Sea sponge Suberea mollis afforded two new brominated arginine-derived alkaloids, subereamines A (1) and B (2), a new brominated phenolic compound, subereaphenol D (3), and the known compounds dichloroverongiaquinol (4), aerothionin (5), and purealdin L (6). The structures of the isolated compounds were assigned using one- and two-dimensional NMR spectra and HRFABMS data. The absolute configurations of subereamines A (1) and B (2) were determined by acid hydrolysis followed by chiral-phase LC-MS. The antimicrobial and antioxidant activities of the isolated compounds have been evaluated. Dichloroverongiaquinol and subereaphenol D displayed significant antimicrobial activity. Using the DPPH TLC autographic rapid screen for free radical scavenging effects, subereaphenol D displayed a significant antioxidant effect. In addition, the cytotoxic activities of the isolated compounds were investigated.
Evidence-based Complementary and Alternative Medicine | 2014
Aymn T. Abbas; Nagla A. El-Shitany; Lamiaa A. Shaala; Soad Shaker Ali; Esam I. Azhar; Umama A. Abdel-dayem; Diaa T. A. Youssef
Recent studies have demonstrated that marine sponges and their active constituents exhibited several potential medical applications. This study aimed to evaluate the possible hepatoprotective role as well as the antioxidant effect of the Red Sea Suberea mollis sponge extract (SMSE) on carbon tetrachloride- (CCl4-) induced acute liver injury in rats. In vitro antioxidant activity of SMSE was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay. Rats were orally administered three different concentrations (100, 200, and 400 mg/kg) of SMSE and silymarin (100 mg/kg) along with CCl4 (1 mL/kg, i.p., every 72 hr) for 14 days. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin were measured. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also measured. Liver specimens were histopathologically examined. SMSE showed strong scavenging activity against free radicals in DPPH assay. SMSE significantly reduced liver enzyme activities. Moreover, SMSE significantly reduced hepatic MDA formation. In addition, SMSE restored GSH, NO, SOD, GPx, and CAT. The histopathological results confirmed these findings. The results of this study suggested a potent protective effect of the SMSE against CCl4-induced hepatic injury. This may be due to its antioxidant and radical scavenging activity.
Marine Drugs | 2013
Diaa T. A. Youssef; Lamiaa A. Shaala; Hani Z. Asfour
In continuation of our search for drug leads from Red Sea sponges we have investigated the ethyl acetate fraction of the organic extract of the Red Sea sponge Hyrtios species. Bioassay-directed fractionation of the active fraction resulted into the identification of three new alkaloids, hyrtioerectines D–F (1–3). Hyrtioerectines D–F belong to the rare marine alkaloids in which the indole and β-carboline fragments of the molecule are linked through C-3/C-3 of both moieties. The structures of the isolated compounds were established based on different spectroscopic data including UV, IR, 1D and 2D NMR (COSY, HSQC, and HMBC) and high-resolution mass spectral studies. The antimicrobial activity against several pathogens and the free radical scavenging activity of the compounds using DPPH reagent were evaluated. In addition, the growth inhibitory activity of the compounds against three cancer cell lines was also evaluated. Hyrtioerectines D–F (1–3) displayed variable antimicrobial, free radical scavenging and cancer growth inhibition activities. Generally, compounds 1 and 3 were more active than compound 2.