Lamya Karim
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lamya Karim.
The Journal of Clinical Endocrinology and Metabolism | 2013
Alexander T. Faje; Lamya Karim; Alexander P. Taylor; Hang Lee; Karen K. Miller; Nara Mendes; Erinne Meenaghan; Mark A. Goldstein; Mary L. Bouxsein; Madhusmita Misra; Anne Klibanski
CONTEXT Adolescents with anorexia nervosa (AN) have low areal bone mineral density (aBMD) at both cortical and trabecular sites, and recent data show impaired trabecular microarchitecture independent of aBMD. However, data are lacking regarding both cortical microarchitecture and bone strength assessment by finite element analysis (FEA) in adolescents with AN. Because microarchitectural abnormalities and FEA may predict fracture risk independent of aBMD, these data are important to obtain. OBJECTIVE Our objective was to compare both cortical and trabecular bone microarchitecture and FEA estimates of bone strength in adolescent girls with AN vs normal-weight controls. DESIGN, SETTING, AND SUBJECTS We conducted a cross-sectional study at a clinical research center that included 44 adolescent girls (21 with AN and 23 normal-weight controls) 14 to 22 years old. MAIN OUTCOME MEASURES We evaluated 1) aBMD (dual-energy x-ray absorptiometry) at the distal radius, lumbar spine, and hip, 2) cortical and trabecular microarchitecture at the ultradistal radius (high-resolution peripheral quantitative computed tomography), and 3) FEA-derived estimates of failure load at the ultradistal radius. RESULTS aBMD was lower in girls with AN vs controls at the lumbar spine and hip but not at the distal radius. Girls with AN had lower total (P < .0001) and trabecular volumetric BMD (P = .02) and higher cortical porosity (P = .03) and trabecular separation (P = .04). Despite comparable total cross-sectional area, trabecular area was higher in girls with AN (P = .04), and cortical area and thickness were lower (P = .002 and .02, respectively). FEA-estimated failure load was lower in girls with AN (P = .004), even after controlling for distal radius aBMD. CONCLUSIONS Both cortical and trabecular microarchitecture are altered in adolescent girls with AN. FEA-estimated failure load is decreased, indicative of reduced bone strength. The finding of reduced cortical bone area in girls with AN is consistent with impaired cortical bone formation at the endosteum as a mechanism underlying these findings.
Journal of Bone and Mineral Research | 2014
Roberto J. Fajardo; Lamya Karim; Virginia I Calley; Mary L. Bouxsein
Evidence indicating that adult type 2 diabetes (T2D) is associated with increased fracture risk continues to mount. Unlike osteoporosis, diabetic fractures are associated with obesity and normal to high bone mineral density, two factors that are typically associated with reduced fracture risk. Animal models will likely play a critical role in efforts to identify the underlying mechanisms of skeletal fragility in T2D and to develop preventative treatments. In this review we critically examine the ability of current rodent models of T2D to mimic the skeletal characteristics of human T2D. We report that although there are numerous rodent models of T2D, few have undergone thorough assessments of bone metabolism and strength. Further, we find that many of the available rodent models of T2D have limitations for studies of skeletal fragility in T2D because the onset of diabetes is often prior to skeletal maturation and bone mass is low, in contrast to what is seen in adult humans. There is an urgent need to characterize the skeletal phenotype of existing models of T2D, and to develop new models that more closely mimic the skeletal effects seen in adult‐onset T2D in humans.
Osteoporosis International | 2013
Lamya Karim; Simon Y. Tang; Deepak Vashishth
SummaryIt is important to establish the relationship between pentosidine and advanced glycation endproducts (AGEs) in bone. We found the relationship between pentosidine and AGEs and their magnitude of accumulation were dependent on bone’s surface-to-volume ratio. Results illustrate the importance of measuring pentosidine and AGEs separately in cancellous and cortical bone.IntroductionAccumulation of collagen cross-links (AGEs) produced by non-enzymatic glycation deteriorates bone’s mechanical properties and fracture resistance. Although a single AGE, pentosidine, is commonly used as a representative marker, it is unclear whether it quantitatively reflects total fluorescent AGEs in bone. The goal of this study was to establish the relationship between pentosidine and total AGEs in cancellous and cortical bone.MethodsPentosidine and total AGEs were quantified in 170 human bone samples. Total fluorescent AGEs were measured in 28 additional cancellous and cortical bone specimens of the same apparent volume that were incubated in control or in vitro glycation solutions. Correlations between pentosidine and total AGEs and differences between cortical and cancellous groups were determined.ResultsPentosidine was correlated with total AGEs in cancellous bone (r = 0.53, p < 0.0001) and weakly correlated in cortical bone (r = 0.23, p < 0.05). There was more pentosidine (p < 0.01) and total AGEs (p < 0.001) in cancellous than in cortical bone. The in vitro glycation substudy showed that cancellous bone accumulated more AGEs than cortical bone (p < 0.05).ConclusionThe relationship between pentosidine and total AGEs and their magnitude of accumulation differed in cancellous and cortical bone of the same apparent volume, and were dependent on the surface-to-volume ratios of each sample. It is important to consider the bone types as two separate entities, and it is crucial to quantify total AGEs in addition to pentosidine to allow for more comprehensive analysis of the effects of non-enzymatic glycation in bone.
PLOS ONE | 2012
Lamya Karim; Deepak Vashishth
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.
Molecular & Cellular Proteomics | 2011
Lamya Karim; Wilfredo Colón; Deepak Vashishth
There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, followed by gel electrophoresis and mass spectrometry analysis. Our strategy allows in-depth analysis of very limited amounts of bone material, and thus, can be important to medical sciences, biology, forensic, anthropology, and archaeology. The developed strategy permitted unprecedented biochemical analyses of bone-matrix proteins, including collagen modifications, using nearly nanoscale amounts of exceptionally homogenous bone tissue. Dissection of fully mineralized bone-tissue at such degree of homogeneity has not been achieved before. Application of our strategy established that: (1) collagen in older interstitial bone contains higher levels of an advanced glycation end product pentosidine then younger osteonal tissue, an observation contrary to the published data; (2) the levels of two enzymatic crosslinks (pyridinoline and deoxypiridinoline) were higher in osteonal than interstitial tissue and agreed with data reported by others; (3) younger osteonal bone has higher amount of osteopontin and osteocalcin then older interstitial bone and this has not been shown before. Taken together, these data show that the level of fluorescent crosslinks in collagen and the amount of two major noncollagenous bone matrix proteins differ at the level of osteonal and interstitial tissue. We propose that this may have important implications for bone remodeling processes and bone microdamage formation.
Journal of Orthopaedic Research | 2011
Lamya Karim; Deepak Vashishth
Alterations in microdamage morphology and accumulation are typically attributed to impaired remodeling, but may also result from changes in microdamage initiation and propagation. Such alterations are relevant for cancellous bone with high metabolic activity and numerous bone quality changes. This study investigates the role of trabecular microarchitecture on morphology and accumulation of microdamage in human cancellous bone. Trabecular bone cores from donors of varying ages and bone volume fraction (BV/TV) were separated into high and low BV/TV groups. Samples were subjected to no load or uniaxial compression to 0.6% (pre‐yield) or 1.1% (post‐yield) strain. Microdamage was stained with lead uranyl acetate and specimens were imaged via microcomputed tomography to quantify microdamage and determine its morphology in three‐dimensions (3D). Donors with high BV/TV had greater post‐yield strain and were tougher than low BV/TV donors. High BV/TV bone had less microdamage than low BV/TV bone under post‐ but not pre‐yield loading. Microdamage under both loading conditions showed significant correlations with microarchitecture and BV/TV, but the key predictor was structure model index (SMI). As SMI increased (more trabecular rods), microdamage morphology became crack‐like. Thus, low BV/TV and increased SMI have strong influences on microdamage accumulation in bone through altered initiation. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1739–1744, 2011
Endocrinology | 2014
Maureen J. Devlin; M. Van Vliet; Katherine J. Motyl; Lamya Karim; Daniel J. Brooks; Leeann Louis; C. Conlon; Clifford J. Rosen; Mary L. Bouxsein
Type 2 diabetes (T2D) incidence in adolescents is rising and may interfere with peak bone mass acquisition. We tested the effects of early-onset T2D on bone mass, microarchitecture, and strength in the TALLYHO/JngJ mouse, which develops T2D by 8 weeks of age. We assessed metabolism and skeletal acquisition in male TALLYHO/JngJ and SWR/J controls (n = 8-10/group) from 4 weeks to 8 and 17 weeks of age. Tallyho mice were obese; had an approximately 2-fold higher leptin and percentage body fat; and had lower bone mineral density vs SWR at all time points (P < .03 for all). Tallyho had severe deficits in distal femur trabecular bone volume fraction (-54%), trabecular number (-27%), and connectivity density (-82%) (P < .01 for all). Bone formation was higher in Tallyho mice at 8 weeks but lower by 17 weeks of age vs SWR despite similar numbers of osteoblasts. Bone marrow adiposity was 7- to 50-fold higher in Tallyho vs SWR. In vitro, primary bone marrow stromal cell differentiation into osteoblast and adipocyte lineages was similar in SWR and Tallyho, suggesting skeletal deficits were not due to intrinsic defects in Tallyho bone-forming cells. These data suggest the Tallyho mouse might be a useful model to study the skeletal effects of adolescent T2D.
Bone | 2016
Lamya Karim; Mary L. Bouxsein
There is clear evidence that patients with type 2 diabetes mellitus (T2D) have increased fracture risk, despite having high bone mineral density (BMD) and body mass index (BMI). Thus, poor bone quality has been implicated as a mechanism contributing to diabetic skeletal fragility. Poor bone quality in T2D may result from the accumulation of advanced glycation end-products (AGEs), which are post-translational modifications of collagen resulting from a spontaneous reaction between extracellular sugars and amino acid residues on collagen fibers. This review discusses what is known and what is not known regarding AGE accumulation and diabetic skeletal fragility, examining evidence from in vitro experiments to simulate a diabetic state, ex vivo studies in normal and diabetic human bone, and diabetic animal models. Key findings in the literature are that AGEs increase with age, affect bone cell behavior, and are altered with changes in bone turnover. Further, they affect bone mechanical properties and microdamage accumulation, and can be inhibited in vitro by various inhibitors and breakers (e.g. aminoguanidine, N-Phenacylthiazolium Bromide, vitamin B6). While a few studies report higher AGEs in diabetic animal models, there is little evidence of AGE accumulation in bone from diabetic patients. There are several limitations and inconsistencies in the literature that should be noted and studied in greater depth including understanding the discrepancies between glycation levels across reported studies, clarifying differences in AGEs in cortical versus cancellous bone, and improving the very limited data available regarding glycation content in diabetic animal and human bone, and its corresponding effect on bone material properties in T2D.
Bone | 2018
Lamya Karim; Miranda van Vliet; Mary L. Bouxsein
Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties.
Injury-international Journal of The Care of The Injured | 2016
Georg Osterhoff; Elise F. Morgan; Sandra J. Shefelbine; Lamya Karim; Laoise M. McNamara; Peter Augat
This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility.